Are You for Real?
Learning Event Factuality in Croatian Texts

Goran Glavaš, Jan Šnajder, and Bojana Dalbelo Bašić
Outline

1. Introduction

2. Lexically-based Model of Event Factuality

3. Evaluation

4. Conclusion
Real-world events are denoted in text by means of *linguistic events* (*event mentions*)

However, not all event mentions denote real-world events that actually occurred

- Absence of happening in the real world (e.g., “The president didn’t *visit* Cuba.”)
- Uncertainty of real-world event happening (e.g., “He *suspected* the plain had *crashed*.”)

Event factuality is the level of information expressing the factual nature of eventualities mentioned in text (Saurí and Pustejovsky, 2012)

- Polarity of event mentions – action/occurrence or the lack of it
- Certainty of event mentions – level of confidence expressed about the real-world event occurring
Lexical Approach to Event Factuality

- Event factuality is the result of an interaction of multiple linguistic elements (Saurí and Pustejovsky, 2012) at
 - Lexical level
 - Syntactical level
 - Discourse level
- Focus on lexical sources of factuality – investigating the feasibility of automated event factuality prediction for resource-poor languages, such as Croatian
Supervised Lexically-based Model

- Two tasks
 - Predicting *polarity* (*positive*, *negative*) of event mentions
 - Predicting *certainty* (*certain*, *possible*, *probable*) of event mentions
- Supervised learning using support vector machines (SVM) with a rich set of purely lexical features
 - Some features were used for both tasks
 - Linear kernel considering the large feature space
Polarity and Certainty Features

- Word, lemma, and stem of the event anchor (a word bearing the meaning of the event)
 - Lemmatization performed using semi-automatically acquired morphological lexicon (Šnajder et al., 2008)
 - Simple stemming removing the suffix from the last vowel

- Ending of the event anchor – The suffix of the word after the last vowel (or the penultimate vowel, if the last letter is a vowel)

- Morphosyntactic descriptor (MSD) of the event anchor – the MULTEXT-East MSDs (Erjavec et al., 2003)

- Bag-of-words (BoW) of the left and right context of the event anchor
 - Two features – one for each context side
 - Context is a 5-token window
Polarity and Certainty Features

- Event type – The manually labelled TimeML-based type of the event anchor
- Verbal and deverbal noun – event anchors that are (de)verbal nouns tend to be hypothetical more often
- Interrogative sentence – events mentions of interrogative sentences are more likely to be uncertain
- Argument of another event – feature indicates if an event anchor is an argument of another event anchor
 - Such events tend to be non-factual more often (e.g., “Napadač je propustio postići pogodak”)
 - Event e_1 has another event e_2 as its argument if e_1 is of type I_ACTION and e_1 occurs in a two-token left context of e_2
Polarity features

- Negativity clues found in left context
 - The left context of event anchor consists of all sentence tokens preceding the event anchor
 - Negativity clues are inflectional forms of *not to be* and *not to want* plus *no, noone, nothing, never* and *neither*

- Negativity clues found in *immediate* left context
 - Negativity clues occurring within a 3-token left window from the event anchor

- Distance between the event anchor and the closest negativity clue
Certainty Features

- Conditionality, future tense, and possibility clues found in left context
 - Conditionality clues are inflectional forms of *would* plus *if* and *whether*
 - Future tense clues are inflectional forms of *will* and the perfective present tense forms of *to be*
 - Possibility clues are inflectional forms of *can/could* plus *maybe* and *possibly*
- Conditionality, future tense, and possibility clues found in *immediate* left context
 - Occurring within a 3-token left window from the event anchor
- Distance between the event anchor and the closest Conditionality/future tense/possibility clue
Selection of 90 documents from the newspaper corpus Vjesnik, previously annotated for event and temporal relation extraction (Marović et al., 2012)

- Total of 4596 events annotated for polarity and certainty by two annotators
- Majority of events (78.6%) labelled as positive and certain
 - Expected for the newspaper genre

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certain</td>
<td>3613</td>
<td>139</td>
</tr>
<tr>
<td>Possible</td>
<td>450</td>
<td>39</td>
</tr>
<tr>
<td>Probable</td>
<td>330</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>4393</td>
<td>203</td>
</tr>
</tbody>
</table>

Glavaš et al.: Learning Event Factuality in Croatian Texts | IS-IJS SiKDD 2012 | October 8, 2012 | 10/15
Evaluation

- Two baselines for both tasks
 - Majority class baseline (predicting every event to be positive and certain)
 - Simple rule-based baseline
 - Polarity – *negative* if any of the negativity clues is found in its immediate left context
 - Certainty – *possible* if any of the conditionality clues is found in its immediate left context, and *probable* if any of the future clues is found
- 10-fold cross validation was performed and the average performance is reported
Polarity Results

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
<th>Macro-average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (majority)</td>
<td>97.72</td>
<td>–</td>
<td>48.85</td>
</tr>
<tr>
<td>Baseline (rule-based)</td>
<td>98.93</td>
<td>76.26</td>
<td>86.88</td>
</tr>
<tr>
<td>Supervised model</td>
<td>99.06</td>
<td>77.22</td>
<td>88.51</td>
</tr>
</tbody>
</table>

- Difference in performance between the supervised model and the rule-based baseline is not statistically significant at 0.05 level.
- We credit this to the limited size of the training set in which there is an insufficient number of events of negative polarity expressed by lexical units other than the negativity clues.
 - E.g., “Napadač je propustio postići pogodak”
Certainty Results

<table>
<thead>
<tr>
<th></th>
<th>Certain</th>
<th>Possible</th>
<th>Probable</th>
<th>Macro-av.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (majority)</td>
<td>89.77</td>
<td>–</td>
<td>–</td>
<td>29.92</td>
</tr>
<tr>
<td>Baseline (rule-based)</td>
<td>88.99</td>
<td>29.78</td>
<td>41.81</td>
<td>53.93</td>
</tr>
<tr>
<td>Supervised model</td>
<td>91.95</td>
<td>43.44</td>
<td>46.41</td>
<td>61.79</td>
</tr>
</tbody>
</table>

- Supervised model significantly outperforms both baselines.
- Performance rates of 40% or 50% for probable and possible classes are not satisfactory for real-world applications.
- Precision significantly higher than recall – need for additional syntactic and discourse level based features.
Conclusions

- We presented a supervised machine learning approach to recognizing event factuality in Croatian texts.
- The model is based purely on lexical features, thus suitable for resource-poor languages.
- Predicting event polarity
 - Feasible with the supervised model.
 - Not significantly better than a simple rule-based baseline.
- Predicting event certainty
 - Not feasible using purely lexical features although the supervised model outperforms a rule-based baseline.
- Determining certainty of event mentions mandates the use of syntactic, semantic, and discourse based features.
Thank you for your attention!

Text Analysis and Knowledge Engineering Laboratory
www.takelab.hr
info@takelab.hr, takelab@fer.hr