Effect of Strong Confinement on Defect Structures of Cholesteric Blue Phases

Jun-ichi Fukuda (福田 順一)
Nanosystem Research Institute, AIST, Japan

Slobodan Žumer
University of Ljubljana & Jožef Stefan Institute, Slovenia
Introduction

• What are “cholesteric blue phases”?
 • 3D orientationally ordered structure due to chirality
 • Bragg reflection in the visible range (color)
 • Optically isotropic (no birefringence)

Typical optical textures of blue phases (platelet)

Introduction

• What are “cholesteric blue phases”?
• How LC molecules are arranged in blue phases?
Introduction

- What are “cholesteric blue phases”?
- How LC molecules are arranged in blue phases?

Double twist cylinder

http://kikuchi-lab.cm.kyushu-u.ac.jp/kikuchilab/bluephase.html
Introduction

• What are “cholesteric blue phases”?
 • How LC molecules are arranged in blue phases?

Double twist cylinder

Double twist:
 • Energetically more favorable (locally) than single twist

http://kikuchi-lab.cm.kyushu-u.ac.jp/kikuchilab/bluephase.html
Introduction

• What are “cholesteric blue phases”?
• How LC molecules are arranged in blue phases?

Double twist cylinder

Double twist:
• Energetically more favorable (locally) than single twist
• Cannot fill in the whole space (global constraint)
Introduction

• What are “cholesteric blue phases”?
• How LC molecules are arranged in blue phases?

Double twist cylinder

Double twist:
• Energetically more favorable (locally) than single twist
• Cannot fill in the whole space (global constraint)

→ Frustration (disclination lines)

http://kikuchi-lab.cm.kyushu-u.ac.jp/kikuchilab/bluephase.html
Introduction

- What are “cholesteric blue phases”?
- How LC molecules are arranged in blue phases?

Double twist cylinder

Double twist:
- Energetically more favorable (locally) than single twist
- Cannot fill in the whole space (global constraint)

→ Frustration (disclination lines)

-1/2 disclination

http://kikuchi-lab.cm.kyushu-u.ac.jp/kikuchilab/bluephase.html
Introduction

• What are “cholesteric blue phases”?
 • Arrangement of disclination lines and double twist cylinders
Introduction

• The present study

Structure of a chiral liquid crystal under a strong confinement

BP I
Model and theoretical argument

- Landau-de Gennes theory
 2nd-rank tensor χ_{ij}: orientational order
Model and theoretical argument

- Landau-de Gennes theory
 2nd-rank tensor χ_{ij}: orientational order

Free energy density in the bulk (after rescaling)

\[
\begin{align*}
\varphi_{\text{bulk}} &= \tau \text{Tr} \chi^2 - \sqrt{6} \text{Tr} \chi^3 + (\text{Tr} \chi^2)^2 \\
\varphi_{\text{grad}} &= \kappa^2 \{(\tilde{\nabla} \times \chi)_{ij} + \chi_{ij}\}^2 + \eta[(\tilde{\nabla} \cdot \chi)_i]^2
\end{align*}
\]

Wright & Mermin, Rev. Mod. Phys. (1989)
Model and theoretical argument

- Landau-de Gennes theory
 2nd-rank tensor χ_{ij}: orientational order

Free energy density in the bulk (after rescaling)

$$
\varphi_{\text{bulk}} = \tau \text{Tr} \chi^2 - \sqrt{6} \text{Tr} \chi^3 + (\text{Tr} \chi^2)^2
$$

$$
\varphi_{\text{grad}} = \kappa^2 \{(\nabla \times \chi)_{ij} + \chi_{ij}\}^2 + \eta [(\nabla \cdot \chi)_i]^2
$$

arises from chirality

Wright & Mermin, Rev. Mod. Phys. (1989)
Model and theoretical argument

- Landau-de Gennes theory
 2nd-rank tensor χ_{ij}: orientational order

Free energy density in the bulk (after rescaling)

$$\varphi_{\text{bulk}} = \tau \, \text{Tr} \chi^2 - \sqrt{6} \, \text{Tr} \chi^3 + (\text{Tr} \chi^2)^2$$

$$\varphi_{\text{grad}} = \kappa^2 \{ [(\tilde{\nabla} \times \chi)_{ij} + \chi_{ij}]^2 + \eta [(\tilde{\nabla} \cdot \chi)_i]^2 \}$$

arises from chirality

Rescaled parameters: τ: temperature
κ: chirality
$\eta = 1$ (one-const. elasticity)

Wright & Mermin, Rev. Mod. Phys. (1989)
Model and theoretical argument

Free energy of surface anchoring (after rescaling)

\[\varphi_s = \frac{1}{2} w \text{Tr} (\chi - \chi_s)^2 \hspace{1cm} \text{with} \hspace{1cm} \chi_{s\alpha\beta} = S_0 (\nu_\alpha \nu_\beta - (1/3) \delta_{\alpha\beta}) \]
Model and theoretical argument

Free energy of surface anchoring (after rescaling)

\[\varphi_s = \frac{1}{2} w \text{Tr} (\chi - \chi_s)^2 \quad \text{with} \quad \chi_{s\alpha\beta} = S_0 (\nu_\alpha \nu_\beta - (1/3) \delta_{\alpha\beta}) \]

homeotrop (normal) anchoring
Model and theoretical argument

Free energy of surface anchoring (after rescaling)

\[\varphi_s = \frac{1}{2} w \text{Tr} (\chi - \chi_s)^2 \quad \text{with} \quad \chi_{s\alpha\beta} = S_0 (\nu_{\alpha\nu_{\beta}} - (1/3)\delta_{\alpha\beta}) \]

\(w \): anchoring strength

homeotrop (normal) anchoring
Model and theoretical argument

Free energy of surface anchoring (after rescaling)

\[\varphi_s = \frac{1}{2} w \text{Tr}(\chi - \chi_s)^2 \quad \text{with} \quad \chi_{s\alpha\beta} = S_0 (\nu_\alpha \nu_\beta - (1/3) \delta_{\alpha\beta}) \]

\[w : \text{anchoring strength} \]

homeotropic (normal) anchoring

Total free energy (per unit area)

\[F = \frac{1}{A} \int dx \, dy \left[\int_0^d dz \left(\varphi_{\text{local}} \{ \chi \} + \varphi_{\text{grad}} \{ \chi; \nabla \} \right) + \varphi_s \{ \chi(z = 0) \} + \varphi_s \{ \chi(z = d) \} \right] \]

\[\text{bulk} \quad \text{surface} \]
Model and theoretical argument

Free energy of surface anchoring (after rescaling)

\[\varphi_s = \frac{1}{2} w \text{Tr}(\chi - \chi_s)^2 \quad \text{with} \quad \chi_{s\alpha\beta} = S_0 (\nu_\alpha \nu_\beta - (1/3) \delta_{\alpha\beta}) \]

\(w \) : anchoring strength

homeotropic (normal) anchoring

Total free energy (per unit area)

\[F = \frac{1}{A} \int dx \, dy \left[\int_0^d dz \left(\varphi_{\text{local}} \{\chi\} + \varphi_{\text{grad}} \{\chi, \nabla\} \right) + \varphi_s \{\chi(z = 0)\} + \varphi_s \{\chi(z = d)\} \right] \]

Minimized numerically
Model and theoretical argument

Choice of parameters:

\[\tau = -1, \kappa = 0.7 \]

\[w = 0.5 \]
Model and theoretical argument

Choice of parameters:

\[\tau = -1, \kappa = 0.7 \]

BP I is stable in the bulk.

\[w = 0.5 \]
Model and theoretical argument

Choice of parameters:

\[\tau = -1, \kappa = 0.7 \]

BP I is stable in the bulk.

\[w = 0.5 \]

intermediate anchoring
Model and theoretical argument

Choice of parameters:

\[\tau = -1, \kappa = 0.7 \]
\[w = 0.5 \]

BP I is stable in the bulk.
Intermediate anchoring

In real units,
Model and theoretical argument

Choice of parameters:
\[\tau = -1, \kappa = 0.7 \]

BP I is stable in the bulk.

\[w = 0.5 \]

intermediate anchoring

In real units,

Cholesteric pitch:

\[2\pi / q_0 \approx 160\text{nm} \]

strong chirality
Model and theoretical argument

Choice of parameters:
\[\tau = -1, \kappa = 0.7 \]
\[w = 0.5 \]

BP I is stable in the bulk.
intermediate anchoring

In real units,
Cholesteric pitch: \[\frac{2\pi}{q_0} \approx 160\text{nm} \quad \text{strong chirality} \]
Anchoring strength: \[W \approx 2 \times 10^{-4}\text{Jm}^{-2} \]
Model and theoretical argument

Choice of parameters:
\(\tau = -1, \kappa = 0.7 \)
\(w = 0.5 \)

BP I is stable in the bulk.

intermediate anchoring

In real units,

Cholesteric pitch:
\(\frac{2\pi}{q_0} \approx 160\text{nm} \) strong chirality

Anchoring strength:
\(W \approx 2 \times 10^{-4}\text{Jm}^{-2} \)

Choice of cell thickness: \(9 \leq d \leq 18 \)
Model and theoretical argument

Choice of parameters:
\[\tau = -1, \quad \kappa = 0.7 \]
\[w = 0.5 \]
BP I is stable in the bulk.
Intermediate anchoring

In real units,
Cholesteric pitch: \[\frac{2\pi}{q_0} \approx 160\text{nm} \] strong chirality
Anchoring strength: \[W \approx 2 \times 10^{-4}\text{Jm}^{-2} \]

Choice of cell thickness: \[9 \leq d \leq 18 \]
Cholesteric pitch: \[4\pi \leftrightarrow 160\text{nm} \]
Model and theoretical argument

Choice of parameters:
\[\tau = -1, \kappa = 0.7 \]
\[w = 0.5 \]

BP I is stable in the bulk.

Intermediate anchoring

In real units,

Cholesteric pitch: \(\frac{2\pi}{q_0} \approx 160\text{nm} \) strong chirality

Anchoring strength: \(W \approx 2 \times 10^{-4}\text{Jm}^{-2} \)

Choice of cell thickness: \(9 \leq d \leq 18 \)

Cholesteric pitch: \(4\pi \leftrightarrow 160\text{nm} \)

\[110\text{nm} \lesssim d \lesssim 230\text{nm} \] strong confinement
Results

Various stable/metastable profiles
Results

Various stable/metastable profiles

Structures similar to bulk BP I
Results

Various stable/metastable profiles

Structures similar to bulk BP I

Structures not expected from bulk BP I
Results

Various stable/metastable profiles
Results

Various stable/metastable profiles

Parallel array of double-helix disclination lines
Results

Various stable/metastable profiles

Two orthogonal arrays of undulating disclination lines
Results

Free energy with the variation of cell thickness d
Results

Free energy with the variation of cell thickness d

Stable structures:
Results

Free energy with the variation of cell thickness d

Stable structures: (smaller d)
Results

Free energy with the variation of cell thickness d

Stable structures: (smaller d) (larger d)
Results
Results

Orientational structure of “double-helix disclinations”
Results

Orientational structure of “double-helix disclinations”
Results

Orientational structure of “double-helix disclinations”

- \(xz \)
- \(yz \)
- \(xy \)

- double-twist cylinders
- disclination lines
Results

Orientational structure of “double-helix disclinations”

- Double-twist cylinders
- Disclination lines
- Double-twist cylinder
Orientational structure of “double-helix disclinations”

- double-twist cylinders
- disclination lines
- double-twist cylinder
- simple orthorhombic lattice
Results
Results

Orientational structure of “undulating disclinations”
Results

Orientational structure of “undulating disclinations”

- double-twist cylinders
- disclination lines
Results

Orientational structure of “undulating disclinations”

double-twist cylinders

disclination lines

double-twist cylinder

simple orthorhombic lattice
Results
Results

Comparison between the two configurations

double-helix disclinations undulating disclinations

disclination lines

double-twist cylinders
Results

Comparison between the two configurations

double-helix disclinations

undululating disclinations

Close similarities
Results

Free energy with the variation of cell thickness d

Stable structures: (smaller d) (larger d)
Results

Free energy with the variation of cell thickness d

Stable structures: (smaller d) (larger d)

Why?
Results
Results

Why is more stable for smaller d?

defect rearrangement with smaller thickness
Discussion

Possibility of experimental observation
Discussion

Possibility of experimental observation

TEM with freeze-fracture technique

BP I

Costello et al. PRA (1984)

FIG. 2. As Fig. 1, except that the material was quenched from the blue phase I at 26.5°C to −170°C.
Discussion

Possibility of experimental observation

TEM with freeze-fracture technique

BP I
Costello et al. PRA (1984)

Confocal microscopy

BP I
Higashiguchi et al. JACS (2008)

Particle-like excitation in a chiral nematic cell

FIG. 2. As Fig. 1, except that the material was quenched from the blue phase I at 26.5°C to −170°C.
Conclusion
Conclusion

Defect structures of a chiral liquid crystal under strong confinement were studied numerically.
Conclusion

Defect structures of a chiral liquid crystal under **strong confinement** were studied numerically.

Various structures not found before
Conclusion

Defect structures of a chiral liquid crystal under strong confinement were studied numerically.

Various structures not found before

Interesting examples of frustration (between bulk structures and confinement)
Conclusion
Conclusion

- Future directions
 - Different anchoring (ex. planar)
 - Temperature change
 - Effect of an applied field
 - Optical properties
Conclusion

Confinement can yield far more structures.

BP II-like

hexagonal structure
Conclusion

• References

Conclusion

References

Financial support
Slovenian Research Agency, ARRS Research Program
Priority Area “Soft Matter Physics” (MEXT, Japan)
Conclusion

References

Financial support
Slovenian Research Agency, ARRS Research Program
Priority Area “Soft Matter Physics” (MEXT, Japan)

Thank you for your attention!