Efficient Sampling for Bayesian Inference of Conjunctive Bayesian Networks for cancer progression modeling

Thomas Sakoparnig

Computational Biology Group, ETH Zurich - Biosystems Science and Engineering

Sept 9th 2012
Characteristics of Cancer progression

• evolutionary process
• accumulation of advantageous mutations
• recurrent mutations
• mutations depend on presence of other mutations
• order in general unknown (dependency structure)
Temporal order: CBN

Mutation pattern: (cross-sectional data)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
</tbody>
</table>
Problem at hand

- quantify uncertainty of structure estimation
- sampling in Bayesian network structure space
- local optima
Bayesian inference of CBNs

dependency structure: \prec
mutation probabilities: θ_k

$$\Pr(Z \mid \prec, \theta) = \prod_{\{k : Z_k = 1\}} \theta_k \prod_{k \in \text{Exit}(Z)} (1 - \theta_k) \quad (1)$$

if Z is compatible with \prec, and zero otherwise.

$$\Pr(X \mid Z, \varepsilon) = \varepsilon^{d(X, Z)} (1 - \varepsilon)^{n - d(X, Z)} \quad (2)$$

where $d(X, Z)$ is the Hamming distance between X and Z and ε is the error probability.
Bayesian inference of CBNs II

The marginal likelihood of the m measured genotypes, denoted D, can then be written as

$$\Pr(D \mid \prec, \theta, \varepsilon) = \prod_{X \in D} \sum_{Z} \Pr(X \mid Z, \varepsilon) \Pr(Z \mid \prec, \theta)$$ \hspace{1cm} (3)$$

$$\Pr(\prec, \theta, \varepsilon \mid D) \propto \prod_{X \in D} \sum_{Z} \left[\Pr(X \mid Z, \varepsilon) \times \Pr(Z \mid \prec, \theta) \right] \prod_{k=1}^{n} \Pr(\theta_k) \Pr(\prec) \Pr(\varepsilon)$$ \hspace{1cm} (4)$$

Priors:
$$\Pr(\prec) = 1$$
$$\Pr(\theta_k) = 10^{-5}$$
$$\Pr(\varepsilon) = \text{Beta}(5, 30)$$
Hybrid sampler

- random scan Metropolis-Hastings within Gibbs sampler
- eight move types (six structure and two continuous parameter moves)
- asymmetric move types have disjoint neighborhoods
- structure moves are complemented by theta moves
Structure moves

New/Delete cover relation

Event exchange

Reincarnation

New/Delete transitive closure relation
Remaining moves and convergence calling

Other move types
 - relocate theta (from Uniform(0,1) proposal)
 - relocate epsilon (from Beta(2,20) proposal)

Convergence calling
 - multiple chains
 - comparison of intra- and inter-chain variance
Simulation study I

• four chains
• 25,000 samples per chain
• keeping every 20th samples
• convergence in one to five rounds
Simulation study II

N=100, epsilon=0.1

N=100, epsilon=0.01

N=400, epsilon=0.1

N=400, epsilon=0.01

N=800, epsilon=0.01

EMPTY poset, N=100, epsilon=0.01
Simulation study III

Details of $N = 100$ and $\varepsilon = 0.01$:
RCC CGH data analysis

- 251 renal cell carcinomas (RCC) (Jiang et al. 2000, Cancer Res.)
- comparative genome hybridization (CGH)
- only three dependencies have posterior probability > 0.5
Discussion

• only up to 15 loci
• convergence calling for the structure
• move types may be useful for other Bayesian networks (with unambiguous edge directions)
• usage in predictive modeling
Acknowledgement

Thanks to
Niko Beerenwinkel and the whole Beerenwinkel group