



Spanning time scales and levels of organization of insulin secretion with mathematical modeling: From seconds to hours, from molecules to organ

#### Morten Gram Pedersen Department of Information Engineering University of Padova, Italy

Gianna M. Toffolo and Claudio Cobelli (U. Padova, Italy), Arthur Sherman (NIH, Bethesda, USA)

#### Glucose stimulated insulin secretion

- Insulin is secreted from the pancreatic beta-cells in response to (mainly) glucose
- Insulin is stored in
  secretory granules
- Released by Ca<sup>2+</sup> triggered exocytosis



## Phasic insulin secretion

- Insulin is secreted in typical biphasic pattern in response to glucose-step
- Seen *in vivo*, from pancreases and from islets
- Pools of granules?



### Minimal models of insulin secretion – estimated from in vivo data

• C-peptide minimal model allows estimation of dynamic and static beta-cell responsitivity

(Toffolo et al., Diabetes 1995, AJP 2001; Cobelli et al., AJP 2007)



## Dynamic secretion term

- Derivative control: The pancreas responds not only to glucose concentration G ("static", with delay), but also to rate-of-change dG/dt
- Necessary to fit in vivo data (Graded up-down: Toffolo et al., AJP 2001; OGTT: Breda et al., Diabetes 2001)



• Where does it come from?

#### Staircase experiment

- Rat pancreas
  (Grodsky, JCI 1972)
- Sum of peaks = peak at max concentration → threshold hypothesis (Grodsky, JCI 1972)



Time (t) in minutes

### Grodsky's threshold hypothesis

 Two pools of "packages"  "Labile packages" are heterogeneous, different glucose thresholds for release



## Model development

- Previous attempts: Grodsky (JCI '72), Landahl & Grodsky (BMB '82)
- Recent granule models: Bertuzzi et al. (AJP '07), Chen et al. (BJ '08), Pedersen & Sherman (PNAS '09)
- Cells (not granules!) activate at different glucose concentrations → <u>heterogeneous RRP</u>

(Pedersen et al., Phil Trans Roy Soc A 2008)



## It does the job...

#### Staircase 0.4 0.3 SR [µg/min] 0.2 0.1 0.0 15 5 10 20

- Other recent models do not reproduce staircase
- Heterogeneous RRP allows reproduction of staircase experiment
- In contrast to Grodsky, due not to threshold on granules but on cells (or islets?) as seen in experiments

Where does derivative control come from? (Pedersen et al., AJP 2010)

- Threshold distribution underlies derivative control (Grodsky, JCI 1972; Licko, Bull Math Biol 1973)
- Here:
  - SR = mF
  - dF/dt = -(m+k)F + fH(G), H(G)=  $\int_0^G h(g)dg$
  - $dH/dt = \int_0^G dh(g)/dt dg + h(G) dG/dt$ = - (f+p<sup>-</sup>)H(G) + p<sup>+</sup>I Φ(G) + h(G) dG/dt
  - Assume quasi steady-state
    - SR(t) = const [  $p^+I(t,\tau) \Phi(G(t)) + h(G(t)) dG/dt(t)$  ]

Dynamic responsitivity Static responsitivity

# Relative contributions of dynamic vs. static secretion



- •Glucose profile following a meal
- •Model parameters adjusted to give reasonable C-peptide data
- •Legend:
  - Full model
  - Approximation
  - Dynamic
  - Static

## Conclusions (part 1)

- Relatively simple model, but founded on biologically established principles (non-phenomenological)
- Can explain static and dynamic secretion terms
  - *Dynamic* due to recruitment of cells (or islets?)
  - Static due to refilling of RRP (introduces delay)
- The model could (should!?) be coupled to models of calcium dynamics
- Such models provide mechanistic underpinning of the assumptions of the minimal models Granules  $\rightarrow$  cells  $\rightarrow$  pancreas
- ... and could help in interpreting in vivo data (disturbances in diabetics?)

# Distinct mechanisms account for 1<sup>st</sup> and 2<sup>nd</sup> phase secretion



Ohara-Imaizumi et al. (JBC 2002, Biochem J 2004)

### 1<sup>st</sup> (resp. 2<sup>nd</sup>) phase secretion occurs mainly near (resp. away from) Ca<sup>2+</sup> channels

Docked granules fuse *at* Synt1A clusters (~80%), newcomers fuse *away from* Synt1A clusters (~85%)

Synt1A cluster are co-located with L-type Ca<sup>2+</sup> channels (Yang et al., PNAS 1999)

**1** st

**2**nd



(J Cell Biol 2007)



# ... and docking is not a prerequisite for the 2<sup>nd</sup> phase



# Highly calcium sensitive pool (HCSP) of granules



- Wan et al. + Yang & Gillis (JGP 2004)
- Affinity ~ 2 μM
  (~ 20 μM for RRP)
- The HCSP resides away from calcium channels since depolarizations do not empty it
- Newcomers also fuse away from calcium channels

## Including the HCSP

... in the model by Chen et al. (Biophys J 2008)

- Distinction between global, cytosolic and local, microdomain calcium, and between L- and R-type calcium channels
- HCSP assumed to reside away from Ca<sup>2+</sup> channels
- HCSP assumed to be independent of syntaxin-1A, and to consist of granules that are tethered, but still not completely docked



Pedersen & Sherman (PNAS 2009)

#### Simulations: Yang & Gillis protocol

С

0.6

0.8

1.0









#### Simulations: Newcomer granules fuse from the HCSP



#### Simulations: Calcium channel KO



# Simulations: Synt1A KO cells by assuming reduced docking rate



### Different calcium sensors?

- Synaptotagmins (Syt's) are believed to be the sensors of calcium
  - Syt-9 is a low affinity (tens of  $\mu$ M) sensor present in beta-cells, and is likely the IRP sensor
  - Syt-7 and Syt-3 are high affinity (few  $\mu$ M) sensors, and have been suggested to be involved in insulin secretion (Syt-3 controversial). Could be the HCSP sensors

# Simulations: KO of the HCSP sensor



Prediction: Second phase secretion is impaired



# Summary (part 2)

- Part 1 bridges levels of organization (granules  $\rightarrow$  organ)
- Part 2 spans timescales by coupling secretion (*minutes*) to capacitance measurements (*milliseconds*) for various perturbed situations
  - Ca<sup>2+</sup> channels KO/blocking
  - Syntaxin-1A KO
  - Ca<sup>2+</sup> sensor/synaptotagmin KO
- Including a HCSP as a transient state away from L-type calcium channels, naturally identified the HCSP with newcomer granules.
- Mathematical modeling was used to test the plausibility of the biological hypothesis

## Conclusions

- Mathematical models are used to integrate separate experiments in a structured, coherent way
- Can be used to span timescales and levels of organization
- Two classes:
  - "Models to simulate"

(test hypotheses, predict outcome of experiments; can include different levels of detail depending on the scope of the model)

"Models to measure"

(extract information from data; must be simple/minimal to allow parameter estimation)

## Conclusions

- Mathematical models are used to integrate separate experiments in a structured, coherent way
- Can be used to span timescales and levels of organization
- Two classes:
  - "Models to simulate"

(test hypotheses, predict outcome of experiments; can include different levels of detail depending on the scope of the model)

 "Models to measure" (extract information from data; must be simple/minimal to allow parameter estimation)

Thank you!

#### Pools?



Henquin, 2002

Henquin, 2009

#### Results

#### **Biphasic**

#### Potentiation

