fast linear algebra for Java
http://jblas.org

Mikio L. Braun
mikio@cs.tu-berlin.de
TU Berlin, Franklinstr. 28/29, 10587 Berlin

June 23, 2010
Overview

Main features:

- Matrix library for Java based on native BLAS and LAPACK.
- Support for single and double precision floats, real and complex matrices.
- Vectors and two-dimensional dense matrices only.
- For large matrix practically native performance (for example, 10 GFLOPS on a 2GHz Intel Core2Duo processor for matrix-matrix multiplication).
- Precompiled “fat jar” for Linux (Intel), Mac OS, and Windows.
- Parses FORTRAN code to automatically generate JNI stubs.
Benchmarks

vector addition

matrix vector multiplication

matrix matrix multiplication
Structure

Main classes
- FloatMatrix, DoubleMatrix – real matrices.
- ComplexFloatMatrix, ComplexDoubleMatrix – complex matrices.

Computational routines as static methods
- Eigen – eigendecomposition
- Solve – solving linear equations
- Singular – singular value decomposition
- Decompose – decompositions like LU, Cholesky, ...
- Geometry – centering, normalizing, ...
Background on Native Calls in Java
Native calls are expensive:
- Arrays are always copied on native calls.
- For large arrays lots of cache misses.
- Doesn’t make sense to call native code if operation is $O(1)$!

What about direct buffers?
- Direct buffers aren’t garbage collected properly!
- Only makes sense to have a fixed number of direct buffers used for copying → directly use JNI with arrays.

Nevertheless, Java is as fast as C for simple things like vector addition!
Matrix creation

```java
DoubleMatrix a = new DoubleMatrix(10, 5);
// 10 * 5 matrix
DoubleMatrix x = new DoubleMatrix(10);
// vector of length 10
DoubleMatrix y = DoubleMatrix.zeros(10, 5);
DoubleMatrix z = DoubleMatrix.ones(3, 4);
DoubleMatrix g = DoubleMatrix.randn(3, 4);
DoubleMatrix u = DoubleMatrix.rand(3);
```

- Dimensions: rows, columns, length
- Duplicating and copying: dup(), copy()
- Transposing: transpose()
DoubleMatrix a = new DoubleMatrix(10, 5);

// accessing elements by row and column
a.put(3, 2, 10.0);
a.get(2, 3);

// accessing element in linear order
a.get(15);
a.put(20, 1.0);

// for example, for implementing elementwise operations:
for (int i = 0; i < a.length; i++)
 a.put(i, a.get(i) * 3);
Accessing rows and columns: putRow(), getRow(), ...

Pass a buffer object to prevent spurious object creation:

```java
define code
DoubleMatrix a = DoubleMatrix.randn(10, 100);
DoubleMatrix buf = new DoubleMatrix(10);

for (int i = 0; i < a.columns; i++) {
    a.getColumn(i, buf);
    // do something with buf
}
```

DoubleMatrix a = new DoubleMatrix(3, 3, 1, 2, 3, 4, 5, 6, 7, 8, 9);
DoubleMatrix x = new DoubleMatrix(3, 1, 10, 11, 12);

DoubleMatrix y = a.mmul(x);
DoubleMatrix z = x.add(y);

Supported Operations:
- Basic arithmetics: add, sub, mul, mmul, div, dot
- Element-wise logical operations: and, or, xor, not, lt, le, gt, ge, eq, ne
- Rows and vectors to a matrix: addRowVector, addColumnVector, ...
Machine Learning: Kernel Ridge Regression with Gaussian Kernel

Let’s implement the following: Noisy sinc data set learned with Kernel Ridge Regression with a Gaussian Kernel.

Sinc Function

\[
sinc(x) = \begin{cases}
\sin(x)/x & x \neq 0 \\
1 & x = 0.
\end{cases}
\]

```
DoubleMatrix sinc(DoubleMatrix x) {
    return sin(x).div(x);
}
```

Not safe, what about \(x = 0 \)?

```
DoubleMatrix safeSinc(DoubleMatrix x) {
    return sin(x).div(x.add(x.eq(0)));
}
```
Computing a sinc data set

\[X \sim \text{uniformly from } -4, 4\]

\[Y = \text{sinc}(x) + \sigma^2 \varepsilon\]

\[\varepsilon \sim \mathcal{N}(0, 1).\]

```java
DoubleMatrix[] sincDataset(int n, double noise) {
    DoubleMatrix X = rand(n).mul(8).sub(4);
    DoubleMatrix Y = sinc(X) .add( randn(n).mul(noise) );
    return new DoubleMatrix[] {X, Y};
}
```
Gaussian kernel

\[k(x, z) = \exp \left(-\frac{\|x - z\|^2}{w} \right) \]

```java
DoubleMatrix gaussianKernel(double w,
                           DoubleMatrix X,
                           DoubleMatrix Z) {
    DoubleMatrix d =
        Geometry.pairwiseSquaredDistances(X.transpose(),
                                            Z.transpose());
    return exp(d.div(w).neg());
}
```
Kernel Ridge Regression

KRR learns a “normal” kernel model

\[f(x) = \sum_{i=1}^{n} k(x, X_i) \alpha_i \]

with

\[\alpha = (K + \lambda I)^{-1} Y, \]

where \(K \) is the kernel matrix

\[K_{ij} = k(X_i, X_j). \]
DoubleMatrix learnKRR(DoubleMatrix X, DoubleMatrix Y, double w, double lambda) {
 int n = X.rows;
 DoubleMatrix K = gaussianKernel(w, X, X);
 K.addi(eye(n).muli(lambda));
 DoubleMatrix alpha = Solve.solveSymmetric(K, Y);
 return alpha;
}

DoubleMatrix predictKRR(DoubleMatrix XE, DoubleMatrix X, double w, DoubleMatrix alpha) {
 DoubleMatrix K = gaussianKernel(w, XE, X);
 return K.mmul(alpha);
}
Computing the mean-squared error

\[\frac{1}{n} \sum_{i=1}^{n} (Y_i - Y'_i)^2 \]

double mse(DoubleMatrix Y1, DoubleMatrix Y2) {
 DoubleMatrix diff = Y1.sub(Y2);
 return pow(diff, 2).mean();
}

Conjugate Gradients

1. $r \leftarrow b - Ax$
2. $p \leftarrow r$
3. repeat
4. $\alpha \leftarrow \frac{r^T r}{p^T Ap}$
5. $x \leftarrow x + \alpha p$
6. $r' \leftarrow r - \alpha Ap$
7. if r' is sufficiently small, exit loop
8. $\beta \leftarrow \frac{r'^T r'}{r^T r}$
9. $p \leftarrow r + \beta p$
10. $r \leftarrow r'$
11. end repeat
DoubleMatrix cg(DoubleMatrix A, DoubleMatrix b,
 DoubleMatrix x, double thresh) {
 int n = x.length;
 DoubleMatrix r = b.sub(A.mmul(x)); // 1
 DoubleMatrix p = r.dup(); // 2
 double alpha = 0, beta = 0;
 DoubleMatrix r2 = zeros(n), Ap = zeros(n);
 while (true) { // 3
 A.mmuli(p, Ap);
 alpha = r.dot(r) / p.dot(Ap); // 4
 x.addi(p.mul(alpha)); // 5
 r.subi(Ap.mul(alpha), r2); // 6
 double error = r2.norm2(); // 7
 System.out.printf("Residual error = %f\n", error);
 if (error < thresh)
 break;
 beta = r2.dot(r2) / r.dot(r); // 8
 r2.addi(p.mul(beta), p); // 9
 DoubleMatrix temp = r; // 10
 r = r2;
 r2 = temp;
 }
 return x;
Outlook

- Better integration of different matrix classes.
- Better performance through caching.
- Support for sparse matrices and more compact storage schemes.