Incremental Light Bundle Adjustment

Vadim Indelman, Richard Roberts, Chris Beall, Frank Dellaert

College of Computing, Georgia Institute of Technology
Introduction

- Bundle Adjustment: reconstruct camera poses and structure

- Applied in a variety of applications:

 - Structure from motion [Snavely et al., 2006]
 - Augmented Reality [Klein et al., 2007]
 - Full SLAM Map of Intel Labs
 - Distributed SAM [Cunningham et al., 2010]

Top image from: http://www.tnt.uni-hannover.de/project/motionestimation
Bundle Adjustment (BA)

- A large sparse optimization problem
 - Minimization of re-projection errors between all views and observed 3D points
 - Efficient solvers exist that exploit the sparse nature of typical SfM\SLAM problems
 - SBA [Lourakis et al., 2009]
 - SSBA [Konolige, 2010]
 - iSAM2 [Kaess et al., 2012]

\[
J_{BA}\left(\hat{x}, \hat{L}\right) = \sum_{i=1}^{N} \sum_{j=1}^{M} \left\| p_i^j - \text{Proj}\left(\hat{x}_i, \hat{L}_j\right) \right\|_\Sigma^2
\]

- Assuming N cameras\images observing M 3D points
 - Number of variables to optimize: \(6N + 3M\)
 - Need to initialize both camera poses and 3D points (structure)
“Structure-Less” BA

- Camera poses are optimized without iterative structure estimation
- Cost function is based on multi-view constraints
 - Instead of minimizing re-projections errors as in conventional BA
 - 3D points are algebraically eliminated
 - Much less variables to optimize over [Rodríguez et al., 2011]!
- If required, all or some of the 3D points can be reconstructed
 - Based on the optimized camera poses

- Several structure-less BA methods have been recently developed
 - [Steffen et al., 2010], [Rodríguez et al., 2011], [Indelman, 2012]
- All methods perform **batch optimization**
Incremental Light Bundle Adjustment (iLBA)

In this work:

- We combine two key-ideas
 - **Structure-less BA:**
 - Significantly less variables to optimize over than in BA
 - Three-view constraints are used to allow consistent estimates also when camera centers are co-linear
 - **Incremental inference over graphical models:**
 - Only part of the camera poses are re-calculated
 - These cameras are systematically identified
 - Calculations from previous steps are re-used
 - Sparsity is fully exploited
 - Developed in robotics community [Kaess et al., 2012]
Structure-Less BA (SLB)

- Re-projection errors are approximated by the difference between measured and “fitted” image observations [Steffen et al., 2010], [Indelman, 2012]
 - Subject to satisfying applicable multi-view constraints
 \[J_{SLB}(\hat{x}, \hat{p}) = \sum_{i=1}^{N} \sum_{j=1}^{M} \left\| \mathbf{p}_{i}^{j} - \hat{\mathbf{p}}_{i}^{j} \right\|^2 - 2\lambda^T h(\hat{x}, \hat{p}) \]
 - All multi-view constraints for a given sequence of view:
 \[h \doteq \left[h_1 ~ \ldots ~ h_{N_h} \right]^T \]
 - \(h_k \): k-th multi-view constraint
 - \(N_h \): Number of all applicable multi-view constraints for a given sequence

- Number of actual optimized variables is larger than in BA!
Light Bundle Adjustment (LBA)

- To substantially reduce computational complexity:
 - Do not make corrections to the image observations [Rodríguez et al., 2011]
- Assuming a Gaussian distribution of multi-view constraints h_i:
 - MAP estimate is equivalent to a non-linear least-squares optimization

Cost function:

$$J_{LBA}(\hat{x}) = \sum_{i=1}^{N_h} \|h_i(\hat{x}, p)\|^2_{\Sigma_i}$$

- Σ_i: An equivalent covariance $\Sigma_i = A_i \Sigma A_i^T$
- A_i: Jacobian with respect to the image observations (re-calculated each re-linearization)
- In practice: Calculate Σ_i only once

Number of optimized variables: $6N$
LBA Using Three-View Constraints

- Algebraic elimination of a 3D point that is observed by 3 views \(k, l \) and \(m \) leads to [Indelman et al., 2012]:

\[
\begin{align*}
g_{2v}(x_k, x_l) &= q_k \cdot (t_{k \rightarrow l} \times q_l) \\
g_{2v}(x_l, x_m) &= q_l \cdot (t_{l \rightarrow m} \times q_m) \\
g_{3v}(x_k, x_l, x_m) &= (q_l \times q_k) \cdot (q_m \times t_{l \rightarrow m}) - (q_k \times t_{k \rightarrow l}) \cdot (q_m \times q_l)
\end{align*}
\]

- Necessary and sufficient conditions
- Consistent motion estimation also when camera centers are co-linear
 - In contrast to using only epipolar constraints [Rodríguez et al., 2011]
 - In robotics: reduce position errors along motion heading in straight trajectories

- LBA cost function with three-view constraints:

\[
J_{LBA}(\hat{x}) = \sum_{i=1}^{N_h} \|h_i(\hat{x}, p)\|^2_{\Sigma_i} \\
h_i \in \{g_{2v}, g_{3v}\}
\]
Incremental LBA (iLBA)

- Previous structure-less BA approaches: **batch** optimization
 - [Steffen et al., 2010], [Rodríguez et al., 2011], [Indelman, 2012]
 - Involves updating **all** camera poses each time a new image is added

\[
J_{LBA}(\hat{x}) = \sum_{i=1}^{N_h} \| h_i(\hat{x}, p) \|_{\Sigma_i}^2 \\
J_{SLB}(\hat{x}, \hat{p}) = \sum_{i=1}^{N} \sum_{j=1}^{M} \| p_i^j - \hat{p}_i^j \|_{\Sigma_i}^2 - 2\lambda^T h(\hat{x}, \hat{p})
\]

- However:
 - Short-track features: encode valuable information for camera poses of **only the recent past images**
 - Observing feature points for many frames and loop closures: will typically involve optimizing more camera poses
iLBA - Concept

- Each time a new image is received:
 - Adaptively identify which camera poses should be updated
 - Only part of the previous camera poses are recalculated
 - Calculations from previous steps are re-used
 - Exact solution

- Incremental inference [Kaess et al., 2012]
 - Formulate the optimization problem using a factor graph [Kschischang et al., 2001]
 - Incremental optimization by converting to Bayes net and a directed junction tree (Bayes tree)
iLBA - Factor Graph Formulation

- MAP estimate is given by:
 \[
 \hat{\mathbf{x}} = \arg \max_{\mathbf{x}} p(\mathbf{x}|Z)
 \]

- Factorization of the joint probability function \(p(\mathbf{x}|Z) \)
 \[
 p(\mathbf{x}|Z) \propto \prod_i f_i(\mathbf{x}_i)
 \]
 - Each factor \(f_i \) represents a single term in the cost function
 - \(\mathbf{x}_i \) is a subset of variables related by the \(i \)th measurement\process model

- Example:
 \[
 p(\mathbf{x}) = p(x_0) \prod_j p(x_j|x_{j-1}) \prod_k p(z_k|x_{j_k})
 \]
iLBA - Factor Graph Formulation

- MAP estimate is given by:
 \[\hat{\mathbf{X}} = \arg \max_{\mathbf{X}} p(\mathbf{X}|Z) \]

- Factorization of the joint probability function \(p(\mathbf{X}|Z) \)
 \[p(\mathbf{X}|Z) \propto \prod_{i} f_{i}(\mathbf{X}_{i}) \]
 - Each factor \(f_{i} \) represents a single term in the cost function
 - \(\mathbf{X}_{i} \) is a subset of variables related by the \(i \)th measurement/process model

- In our case:
 - The variables are the camera poses: \(\mathbf{X} \equiv \mathbf{x} \)
 - The factors represent two- and three-view constraints

\[f_{i}(\mathbf{X}_{i}) \equiv \exp \left(-\frac{1}{2} \| h_{i}(\mathbf{x}, \mathbf{p}) \|^{2}_{\Sigma_{i}} \right) \]
\[h_{i} \in \{ g_{2v}, g_{3v} \} \]
Incremental Inference in iLBA

- Consider the non-linear optimization problem:

\[
J_{LBA}(\hat{x}) = \sum_{i=1}^{N_h} \| h_i(\hat{x}, p) \|^2_{\Sigma_i}
\]

\[
\hat{x} = \arg \max_{\mathcal{X}} (p(\mathcal{X}|Z)) = \arg \max_{\mathcal{X}} \prod_i f_i(\mathcal{X}_i)
\]

\[
f_i(\mathcal{X}_i) = \exp \left(-\frac{1}{2} \| h_i(x, p) \|^2_{\Sigma_i} \right)
\]

- Non-linear optimization involves repeated linearization

\[
\Delta^* = \arg \min_{\Delta} (A\Delta - b)
\]

- Solution involves factorization of \(A \) (e.g. QR)

- In our case - \(\Delta \) contains corrections to camera poses

- \(A \) - sparse Jacobian matrix
- \(b \) - right hand side vector
- \(\Delta \) - delta vector
Incremental Inference in iLBA

- Consider the non-linear optimization problem:

\[J_{LBA}(\hat{x}) = \sum_{i=1}^{N_h} \| h_i(\hat{x}, p) \|_{\Sigma_i}^2 \]

\[\hat{x} = \arg \max_{\chi} p(\chi | Z) = \arg \max_{\chi} \prod_i f_i(\chi_i) \]

\[f_i(\chi_i) = \exp \left(-\frac{1}{2} \| h_i(x, p) \|_{\Sigma_i}^2 \right) \]

- Non-linear optimization involves repeated linearization

\[\Delta^* = \arg \min_{\Delta} (A\Delta - b) \]

- Solution involves factorization of \(A \) (e.g. QR)

- When adding a new camera pose, calculations can be re-used
 - Factorization can be updated (and not re-calculated)
 - Only some of the variables should be re-linearized and solved for

- The above is realized by converting the factor graph into a Bayes net (and then to a directed junction tree)

\(A \) - sparse Jacobian matrix
\(b \) - right hand side vector
\(\Delta \) - delta vector
Incremental Inference in iLBA (Cont.)

- Example:

Factor graph

\[x_1 \rightarrow x_2 \rightarrow x_3 \]

Linearization

Jacobian matrix

\[
A = \begin{bmatrix}
\times & \times \\
\times & \times \\
\times & \times \\
\times & \times \\
x_1 & x_2 & x_3
\end{bmatrix}
\]

Factorization

Factorized Jacobian matrix

\[
R = \begin{bmatrix}
\times & \times \\
\times & \times \\
\times & \\
x_1 & x_2 & x_3
\end{bmatrix}
\]
Incremental Inference in iLBA (Cont.)

- Example:

 ![Factor graph](image)

 ![Jacobian matrix](image)

 Linearization and elimination
 Elimination order x_1, x_2, x_3

 ![Bayes net](image)

 ![Factorized Jacobian matrix](image)

 Linearization and factorization of the Jacobian A is equivalent to converting the factor graph into a Bayes net using a chosen elimination order [Pearl, 1998]
Incremental Inference in iLBA (Cont.)

- Adding new measurements and/or new camera poses involves updating only part of the Bayes net.

Example (Cont.):

New camera pose and two- and three-view factors

Bayes net does not change for x_1; calculations can be reused.
Incremental Inference in iLBA (Cont.)

- How to identify what should be re-calculated?
 - Bayes net is converted to Bayes tree (a directed junction tree) [Kaess et al., 2012]

- The “big” picture:

\[J_{LBA}(\hat{x}) = \sum_{i=1}^{N_h} \| h_i(\hat{x}, p) \|_{\Sigma_i}^2 \]

\[\Delta^* = \arg \min_{\Delta} (A\Delta - b) \]

 - Back-substitution (calculation of \(\Delta \)) is performed only for part of the variables (=camera poses)
 - Re-linearization is performed only when needed and only for part of the variables

- Overall - Allows an efficient sparse incremental non-linear optimization
Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th># Images</th>
<th># 3D Points</th>
<th># Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubicle</td>
<td>33</td>
<td>11,066</td>
<td>36,277</td>
</tr>
<tr>
<td>Straight</td>
<td>14</td>
<td>4,227</td>
<td>14,019</td>
</tr>
<tr>
<td>Circle (Synthetic)</td>
<td>120</td>
<td>500</td>
<td>58,564</td>
</tr>
</tbody>
</table>

- Image correspondences and camera calibration were obtained by first running bundler http://phototour.cs.washington.edu/bundler/
- Bundler’s data was **not** used elsewhere
Results (Cont.)

<table>
<thead>
<tr>
<th>Notation</th>
<th>Method</th>
<th>Cost function</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBA</td>
<td>Light bundle adjustment with the covariance Σ_i calculated once</td>
<td>$J_{LBA}(\hat{x}) = \sum_{i=1}^{N_h} | h_i(\hat{x}, p) |_{\Sigma_i}^2$</td>
</tr>
<tr>
<td>$LBA\Sigma$</td>
<td>Light BA with the covariance Σ_i re-calculated at each linearization</td>
<td></td>
</tr>
<tr>
<td>SLB</td>
<td>Structure-less bundle adjustment with image observations corrections</td>
<td>$J_{SLB}(\hat{x}, \hat{p}) = \sum_{i=1}^{N} \sum_{j=1}^{M} \left(| p_i^j - \hat{p}i^j |{\Sigma_i}^2 - 2\lambda^T h(\hat{x}, \hat{p}) \right)$</td>
</tr>
<tr>
<td>BA</td>
<td>Bundle adjustment</td>
<td>$J_{BA}(\hat{x}, \hat{L}) = \sum_{i=1}^{N} \sum_{j=1}^{M} \left(| p_i^j - \text{Proj} \left(\hat{x}_i, \hat{L}j \right) |{\Sigma_i}^2 \right)$</td>
</tr>
</tbody>
</table>

- Incremental smoothing vs incremental batch results will be shown for each method
Results (Cont.)

<table>
<thead>
<tr>
<th>Notation</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>(LBA)</td>
<td>Light BA with the covariance (\Sigma_{i}) calculated once</td>
</tr>
<tr>
<td>(LBA\Sigma)</td>
<td>Light BA with the covariance (\Sigma_{i}) re-calculated upon each linearization</td>
</tr>
<tr>
<td>(SLB)</td>
<td>Structure-less BA with image observations corrections</td>
</tr>
<tr>
<td>(BA)</td>
<td>Bundle adjustment</td>
</tr>
</tbody>
</table>

![Graph showing average reprojection error vs. processing time](image)
Results (Cont.)

<table>
<thead>
<tr>
<th>Notation</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBA</td>
<td>Light BA with the covariance Σ_i calculated once</td>
</tr>
<tr>
<td>LBAΣ</td>
<td>Light BA with the covariance Σ_i re-calculated upon each linearization</td>
</tr>
<tr>
<td>SLB</td>
<td>Structure-less BA with image observations corrections</td>
</tr>
<tr>
<td>BA</td>
<td>Bundle adjustment</td>
</tr>
</tbody>
</table>

- Additional results using **incremental smoothing** (for all methods):

<table>
<thead>
<tr>
<th>Dataset</th>
<th>BA</th>
<th>iLBA</th>
<th>iLBAΣ</th>
<th>SLB</th>
<th>N, M, #Obsrv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubicle</td>
<td>1.981 (μ)</td>
<td>2.1017 (μ)</td>
<td>2.0253 (μ)</td>
<td>1.9193 (μ)</td>
<td>33, 11066, 36277</td>
</tr>
<tr>
<td></td>
<td>1.6301 (σ)</td>
<td>1.8364 (σ)</td>
<td>1.742 (σ)</td>
<td>1.6294 (σ)</td>
<td></td>
</tr>
<tr>
<td>Straight</td>
<td>0.519 (μ)</td>
<td>0.5434 (μ)</td>
<td>0.5407 (μ)</td>
<td>0.5232 (μ)</td>
<td>14, 4227, 14019</td>
</tr>
<tr>
<td></td>
<td>0.4852 (σ)</td>
<td>0.5127 (σ)</td>
<td>0.5098 (σ)</td>
<td>0.4870 (σ)</td>
<td></td>
</tr>
<tr>
<td>Circle (synthetic)</td>
<td>0.6186 (μ)</td>
<td>0.6244 (μ)</td>
<td>0.6235 (μ)</td>
<td>0.6209 (μ)</td>
<td>120, 500, 58564</td>
</tr>
<tr>
<td></td>
<td>0.3220 (σ)</td>
<td>0.3253 (σ)</td>
<td>0.3246 (σ)</td>
<td>0.3235 (σ)</td>
<td></td>
</tr>
</tbody>
</table>

Re-projection errors

Computational cost [sec]
Extended Cubicle dataset

<table>
<thead>
<tr>
<th># Images</th>
<th>148</th>
</tr>
</thead>
<tbody>
<tr>
<td># 3D Points</td>
<td>31,910</td>
</tr>
<tr>
<td># Observations</td>
<td>164,358</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>iLBA</th>
<th>iSLB</th>
<th>iBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run time - Optimization</td>
<td>20 min</td>
<td>76 min</td>
<td>122 min</td>
</tr>
<tr>
<td>Run time - Structure rec.</td>
<td>2 min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outdoor dataset

<table>
<thead>
<tr>
<th></th>
<th>iLBA</th>
<th>iSLB</th>
<th>iBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run time - Optimization</td>
<td>1:56 hr</td>
<td>6:35 hr</td>
<td>5:40 hr</td>
</tr>
<tr>
<td>Run time - Structure rec.</td>
<td>2 min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

- We presented an incremental structure-less BA method: **iLBA**
 - **Reduced number of variables**: 3D points are algebraically eliminated
 - **Incremental inference**: only part of the camera poses are re-calculated each time a new image is added
 - Can handle degenerate configurations (co-linear camera centers)
 - Structure can be reconstructed, but only if required
Summary

- We presented an incremental structure-less BA method: **iLBA**
 - Structure-Less BA + incremental inference
 - Reduced number of variables - 3D points are not part of the iterative optimization
 - Only part of the camera poses are re-calculated each time a new image is added
 - Can handle degenerate configurations (co-linear camera centers)
 - Structure can be reconstructed, but only if required