A Unified Estimation-Theoretic Framework For Error-Resilient Scalable Video Coding

Jingning Han1, Vinay Melkote1,2, and Kenneth Rose1

1Signal Compression Lab
Department of Electrical and Computer Engineering
University of California, Santa Barbara

2 Dolby Labs Inc., San Francisco

July 10, 2012
Estimation-theoretic scalable video coding (ET-SVC) - a transform domain approach to optimal enhancement layer prediction

- Optimally utilizes all available information including base-layer quantization intervals accessible only in the transform domain

Robustness of ET-SVC to packet-losses requires choosing coding modes that minimize End-to-End Distortion (EED)

- Conventionally calculated in the pixel domain, accounts for effects of quantization as well as packet losses
- A well established approach for accurate EED estimation - Recursive Optimal Per-Pixel Estimate (ROPE)

Achieve optimality on both fronts?
A longstanding difficulty due to the fundamental conflict of operating space!
Proposed solution: A unified framework complementing ET-SVC with Spectral Coefficient-wise Optimal Recursive Estimate (SCORE) - EED estimation that operates directly in the transform domain

Added bonus: enables estimation-theoretic (optimal) enhancement layer concealment at the decoder, fully accounted for by encoder EED estimation

Overall system provides significant performance gains over competing optimized H.264/SVC solution
Encode a video sequence into two layers of fidelity scalability.

How to encode efficiently?

H.264 compatible block-based coder

Base Layer

Enhancement Layer

frame index n-2 n-1 n n+1
Enhancement Layer Prediction in SVC

Information accessible for prediction at the enhancement layer:
- High quality (enhancement layer) reconstructions of prior samples
 - inter frame prediction
- Coarsely quantized (base layer) reconstructions of current samples
 - inter layer prediction

Conventional solutions work in pixel domain
- Weighted sum of the enhancement-layer motion compensation and base-layer reconstructed pixels
- Adaptively choose the mode that minimizes rate-distortion cost
DCT blocks along a motion trajectory form an AR process per frequency

Specifically, \(x_n = \rho x_{n-1} + z_n \), where \(\{z_n\} \) are the i.i.d innovations with pdf \(p_Z(z_n) \)

Advantage: largely eliminates spatial correlation before applying a temporal evolution model to individual frequency components
All the relevant information provided by the base layer: \(x_n \in \mathcal{I}_n^b \)
All the relevant information provided by the base layer: \(x_n \in I^b_n \)

The information provided by prior enhancement layer: \(p(x_n|\hat{x}^e_{n-1}) \)
All the relevant information provided by the base layer: $x_n \in \mathcal{I}_n^b$

The information provided by prior enhancement layer: $p(x_n | \hat{x}_{n-1}^e)$

How to optimally combine the two types of information?
The conditional pdf of x_n hence can be expressed as:

$$p(x_n|\hat{x}_{n-1}^e, I_n^b) \approx \begin{cases} \frac{p_Z(x_n-\hat{x}_{n-1}^e)}{\int_{I_n^b} p_Z(x_n-\hat{x}_{n-1}^e)dx_n} & x_n \in I_n^b, \\ 0 & \text{otherwise}. \end{cases}$$

The optimal enhancement layer prediction of x_n given all the available information is the non-linear estimate

$$f(I_n^b, \hat{x}_{n-1}^e) = E(x_n|\hat{x}_{n-1}^e, I_n^b)$$

The prediction residue $x_n - f(I_n^b, \hat{x}_{n-1}^e)$ is quantized and coded into the enhancement layer.
ET-SVC provides significant compression gains when the base layer interval and enhancement layer motion compensated reference are guaranteed.

What if the channel is lossy? Amongst other effects, the calculation of the base layer interval at the decoder would itself be subject to drift.

Drift due to packet loss can be mitigated via judicious choice of per-macroblock coding modes, partitions and QPs:
- Intra mode vs Inter mode at the base layer
- Inter-layer prediction mode vs ET prediction-mode at the enhancement layer

Optimize coding decisions to minimize End-to-End Distortion (EED):
- EED includes the effect of quantization as well as packet losses: can only be \textit{estimated} at the encoder

Efficient utility of the ET-SVC framework over lossy networks mandates an EED estimation mechanism that accommodates its transform domain operation.
EED Estimation via ROPE

- ROPE: an established approach to recursively calculate EED per pixel while accounting for encoder and decoder operations, and channel stochasticity.
- The decoder reconstruction \tilde{f}_n^i is a random variable w.r.t the encoder. Expected EED for this pixel is:

$$E\{(f_n^i - \tilde{f}_n^i)^2\} = (f_n^i)^2 - 2f_n^iE\{\tilde{f}_n^i\} + E\{(\tilde{f}_n^i)^2\}. $$

- ROPE update recursions compute up to second moments of reconstructed pixels.
- The pixel-domain framework of ROPE is incompatible with the non-linear transform domain operations of ET-SVC.
Proposed Approach for EED Estimation

- The obvious: calculate EED in the transform domain - mean squared error is preserved under unitary transformation

- The not so obvious: complications arise due to interaction with motion compensation

Proposed Solution: Spectral Coefficient-wise Optimal Recursive Estimate (SCORE)

SCORE provides a near-accurate per-transform coefficient estimate of EED

Recursively computes first and second moments of reconstructions of transform coefficients of on-grid blocks in a frame

Overcomes intricacies due to off-grid motion compensation references

Explicitly accounts for ET prediction in its update recursions
Proposed Approach for EED Estimation

- The obvious: calculate EED in the transform domain - mean squared error is preserved under unitary transformation

- The not so obvious: complications arise due to interaction with motion compensation

- Proposed Solution: Spectral Coefficient-wise Optimal Recursive Estimate (SCORE)
 - SCORE provides a near-accurate per-transform coefficient estimate of EED
 - Recursively computes first and second moments of reconstructions of transform coefficients of on-grid blocks in a frame
 - Overcomes intricacies due to off-grid motion compensation references
 - Explicitly accounts for ET prediction in its update recursions
SCORE: Expected Distortion

- Specific focus on SCORE recursions at the enhancement layer

 - $x_{n}^{k,m}$: unquantized value of transform coefficient m in block k of frame n.
 - $\hat{x}_{n,e}^{k,m}$: enhancement layer encoder reconstruction of this coefficient.
 - $\tilde{x}_{n,e}^{k,m}$: enhancement decoder reconstruction, possibly after concealment. A random variable w.r.t the encoder.

 ![Diagram showing encoder, lossy channel, decoder, original DCT coefficients, and EED](image)

- The enhancement layer EED of coefficient $x_{n}^{k,m}$ is

 $$E\{(x_{n}^{k,m} - \tilde{x}_{n,e}^{k,m})^2\} = (x_{n}^{k,m})^2 - 2x_{n}^{k,m}E\{\tilde{x}_{n,e}^{k,m}\} + E\{(\tilde{x}_{n,e}^{k,m})^2\}.$$

- SCORE recursively computes $E\{\tilde{x}_{n,e}^{k,m}\}$ and $E\{(\tilde{x}_{n,e}^{k,m})^2\}$
SCORE: Off-Grid Reference Challenge

- SCORE computes and retains first and second moments of transform coefficients of on-grid blocks of a frame.

- However, an on-grid block in the current frame can have an off-grid motion compensation reference, whose moments will feature in the recursions.

\[
\begin{align*}
X_{n-1}^{K_1} & \quad X_{n-1}^{K_2} \\
X_{n-1}^{K_3} & \quad U_n^K \\
DCT & \quad DCT
\end{align*}
\]

AR process: \(-\rightarrow u_n^{k,m} -\rightarrow X_n^{k,m} -\rightarrow\)

- Can we calculate first and second moments of off-grid transform coefficients from those of on-grid transform coefficients?
DCT is a linear transformation: there exist constants $a_{i,m}$ such that,

$$\tilde{u}_{n,e}^{k,m} = \sum_{i=1}^{4} \sum_{m=0}^{15} a_{i,m} \tilde{x}_{n-1,e}^{k_i,m}.$$

The required first and second moments of off-grid blocks:

$$E\{\tilde{u}_{n,e}^{k,m}\} = \sum_{i=1}^{4} \sum_{m=0}^{15} a_{i,m} E\{\tilde{x}_{n-1,e}^{k_i,m}\},$$

$$E\{(\tilde{u}_{n,e}^{k,m})^2\} = \sum_{i=1}^{4} \sum_{j=1}^{4} \sum_{m=0}^{15} \sum_{l=0}^{15} a_{i,m} a_{j,l} E\{\tilde{x}_{n-1,e}^{k_i,m} \tilde{x}_{n-1,e}^{k_j,l}\}.$$
DCT is a linear transformation: there exist constants $a_{i,m}$ such that,

$$\tilde{u}_{n,e}^{k,m} = \sum_{i=1}^{4} \sum_{m=0}^{15} a_{i,m} \tilde{x}_{n-1,e}^{k_i,m}.$$

The required first and second moments of off-grid blocks:

$$E\{\tilde{u}_{n,e}^{k,m}\} = \sum_{i=1}^{4} \sum_{m=0}^{15} a_{i,m} E\{\tilde{x}_{n-1,e}^{k_i,m}\},$$

$$E\{(\tilde{u}_{n,e}^{k,m})^2\} = \sum_{i=1}^{4} \sum_{j=1}^{4} \sum_{m=0}^{15} \sum_{l=0}^{15} a_{i,m} a_{j,l} E\{\tilde{x}_{n-1,e}^{k_i,m} \tilde{x}_{n-1,e}^{k_j,l}\}.$$

Uncorrelatedness: a very good approximation in the transform domain.

$$E\{\tilde{x}_{n-1,e}^{k_i,m} \tilde{x}_{n-1,e}^{k_j,l}\} \approx E\{\tilde{x}_{n-1,e}^{k_i,m}\} E\{\tilde{x}_{n-1,e}^{k_j,l}\}, \quad k_j \neq k_i \text{ or } m \neq l.$$
Case 1: Coding modes: Base layer - Intra, Enhancement layer - ET Prediction

Current base layer packet lost with probability p_b, enhancement layer PLR p_e

<table>
<thead>
<tr>
<th>Base Layer</th>
<th>Events</th>
<th>Enhancement Layer</th>
<th>Probability</th>
<th>Enhancement Layer Decoder Reconstruction of $x_{k,m}^n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>received</td>
<td>received</td>
<td>$(1 - p_b)(1 - p_e)$</td>
<td>$\hat{r}_{n,e}^k + f(\tilde{I}b^n, \tilde{u}{n,e}^k)$</td>
<td></td>
</tr>
<tr>
<td>received</td>
<td>lost</td>
<td>$(1 - p_b)p_e$</td>
<td>$\tilde{x}_{n,b}^k$</td>
<td></td>
</tr>
<tr>
<td>lost</td>
<td>received</td>
<td>$p_b(1 - p_e)$</td>
<td>$\hat{r}{n,e}^k + \tilde{u}{n,e}^k$</td>
<td></td>
</tr>
<tr>
<td>lost</td>
<td>lost</td>
<td>$p_b p_e$</td>
<td>$\tilde{x}_{n,b}^k$</td>
<td></td>
</tr>
</tbody>
</table>

SCORE update recursion:

$$E\{\tilde{x}_{n,e}^k\} = (1 - p_b)(1 - p_e)(\hat{r}_{n,e}^k + E\{f(\tilde{I}_b^n, \tilde{u}_{n,e}^k)\})$$

$$+ (1 - p_b)p_e E\{\tilde{x}_{n,b}^k\}$$

$$+ p_b(1 - p_e)(\hat{r}_{n,e}^k + E\{\tilde{u}_{n,e}^k\})$$

$$+ p_b p_e E\{\tilde{x}_{n,b}^k\}$$
Case 1: Coding modes: Base layer - Intra, Enhancement layer - ET Prediction

Current base layer packet lost with probability p_b, enhancement layer PLR p_e

<table>
<thead>
<tr>
<th>Base Layer</th>
<th>Events</th>
<th>Enhancement Layer</th>
<th>Probability</th>
<th>Decoder Reconstruction of $x_{k,m}^n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>received</td>
<td>received</td>
<td>(1 - p_b)(1 - p_e)</td>
<td>$\hat{r}{n,e}^k$ + $f(\tilde{x}{n,n}^b, \tilde{h}_{n,e}^k)$</td>
<td></td>
</tr>
<tr>
<td>received</td>
<td>lost</td>
<td>(1 - p_b)p_e</td>
<td>$\tilde{x}_{n,b}^k$</td>
<td></td>
</tr>
<tr>
<td>lost</td>
<td>received</td>
<td>$p_b(1 - p_e)$</td>
<td>$\hat{r}{n,e}^k$ + $\tilde{u}{n,e}^k$</td>
<td></td>
</tr>
<tr>
<td>lost</td>
<td>lost</td>
<td>$p_b p_e$</td>
<td>$\tilde{x}_{n,b}^k$</td>
<td></td>
</tr>
</tbody>
</table>

SCORE update recursion:

$$E\{\tilde{x}_{n,e}^k\} = (1 - p_e)(\tilde{r}_{n,e}^k + (1 - p_b)E\{f(\tilde{x}_{n,n}^b, \tilde{h}_{n,e}^k)\} + p_bE\{\tilde{u}_{n,e}^k\}) + p_eE\{\tilde{x}_{n,b}^k\}$$

$$E\{(\tilde{x}_{n,e}^k)^2\} = (1 - p_e)((\tilde{r}_{n,e}^k)^2 + 2\tilde{r}_{n,e}^k((1 - p_b)E\{f(\tilde{x}_{n,n}^b, \tilde{h}_{n,e}^k)\} + p_bE\{\tilde{u}_{n,e}^k\})$$

$$+(1 - p_b)E\{f(\tilde{x}_{n,n}^b, \tilde{h}_{n,e}^k)^2\} + p_bE\{(\tilde{u}_{n,e}^k)^2\}) + p_eE\{(\tilde{x}_{n,b}^k)^2\}$$
SCORE: Enhancement Layer Update Recursions

Case 1: Coding modes: Base layer - Intra, Enhancement layer - ET Prediction

Current base layer packet lost with probability p_b, enhancement layer PLR p_e

<table>
<thead>
<tr>
<th>Base Layer</th>
<th>Enhancement Layer</th>
<th>Probability</th>
<th>Enhancement Layer Decoder Reconstruction of $x_{k,m}^n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>received</td>
<td>received</td>
<td>$(1 - p_b)(1 - p_e)$</td>
<td>$\hat{r}{n,e}^k, \hat{m} + f(\tilde{I}{n,b}^k, \tilde{u}_{n,e}^k)$</td>
</tr>
<tr>
<td>received</td>
<td>lost</td>
<td>$(1 - p_b)p_e$</td>
<td>$\tilde{x}_{n,b}^k, \tilde{m}$</td>
</tr>
<tr>
<td>lost</td>
<td>received</td>
<td>$p_b(1 - p_e)$</td>
<td>$\hat{r}{n,e}^k, \hat{m} + \tilde{u}{n,e}^k$</td>
</tr>
<tr>
<td>lost</td>
<td>lost</td>
<td>$p_b p_e$</td>
<td>$\tilde{x}_{n,b}^k, \tilde{m}$</td>
</tr>
</tbody>
</table>

SCORE update recursion:

$$E\{\tilde{x}_{n,e}^k, \tilde{m}\} = (1 - p_e)(\hat{r}_{n,e}^k, \hat{m}) + (1 - p_b)E\{f(\tilde{I}_{n,b}^k, \tilde{u}_{n,e}^k)\} + p_b E\{\tilde{u}_{n,e}^k\} + p_e E\{\tilde{x}_{n,b}^k, \tilde{m}\}$$

$$E\{(\tilde{x}_{n,e}^k, \tilde{m})^2\} = (1 - p_e)(\hat{r}_{n,e}^k, \hat{m})^2 + 2\hat{r}_{n,e}^k((1 - p_b)E\{f(\tilde{I}_{n,b}^k, \tilde{u}_{n,e}^k)\} + p_b E\{\tilde{u}_{n,e}^k\})$$

$$+ (1 - p_b)E\{f(\tilde{I}_{n,b}^k, \tilde{u}_{n,e}^k)^2\} + p_b E\{(\tilde{u}_{n,e}^k)^2\} + p_e E\{(\tilde{x}_{n,b}^k, \tilde{m})^2\}$$

Non-linearity problem: How to compute first and second moments of the non-linear ET prediction $f(\tilde{I}_{n,b}^k, \tilde{u}_{n,e}^k)$?

- Note: $\tilde{I}_{n,b}^k$, calculated at the decoder, is itself impacted by packet loss.
Solution to the Non-linearity Problem

The base layer interval \tilde{I}_n^b can be decomposed into random and deterministic parts:

$\tilde{I}_n^b = \tilde{x}_{n,b}^k + [-\delta_1, \delta_2]$, where $[-\delta_1, \delta_2]$ is completely determined by the base layer quantization index i_n^b.
Solution to the Non-linearity Problem

- The base layer interval \tilde{I}_n^b can be decomposed into random and deterministic parts:
 - $\tilde{I}_n^b = \tilde{x}_{n,b}^k + [-\delta_1, \delta_2]$, where $[-\delta_1, \delta_2]$ is completely determined by the base layer quantization index i_n^b

- $f(\tilde{I}_n^b, \tilde{u}_{n,e}^{k,m})$ can be represented as $f_{ib}(\tilde{x}_{n,b}^{k,m}, \tilde{u}_{n,e}^{k,m})$
The base layer interval \tilde{I}_n^b can be decomposed into random and deterministic parts:

$$\tilde{I}_n^b = \tilde{x}_{n,b}^k, m + [-\delta_1, \delta_2],$$

where $[-\delta_1, \delta_2]$ is completely determined by the base layer quantization index i_n^b.

$f(\tilde{I}_n^b, \tilde{u}_{n,e}^{k,m})$ can be represented as $f_{i_n^b}(\tilde{x}_{n,b}^k, m, \tilde{u}_{n,e}^{k,m})$.

$f_{i_n^b}(\tilde{x}_{n,b}^k, m, \tilde{u}_{n,e}^{k,m})$ approximated by Taylor series expansion of $f_{i_n^b}(x, u)$ about

$$(E\{\tilde{x}_{n,b}^k\}, E\{\tilde{u}_{n,e}^{k,m}\}),$$

retaining only up to the second order terms.
Solution to the Non-linearity Problem

- The base layer interval \tilde{I}_n^b can be decomposed into random and deterministic parts:
 \[\tilde{I}_n^b = \tilde{x}_{n,b}^k + \delta_1, \delta_2 \], where $[-\delta_1, \delta_2]$ is completely determined by the base layer quantization index i_n^b

- $f(\tilde{I}_n^b, \tilde{u}_{n,e}^k)$ can be represented as $f_{i_n^b}(\tilde{x}_{n,b}^k, \tilde{u}_{n,e}^k)$

- $f_{i_n^b}(\tilde{x}_{n,b}^k, \tilde{u}_{n,e}^k)$ approximated by Taylor series expansion of $f_{i_n^b}(x, u)$ about $(E\{\tilde{x}_{n,b}^k\}, E\{\tilde{u}_{n,e}^k\})$, retaining only up to the second order terms

- Expectations of $f_{i_n^b}(\tilde{x}_{n,b}^k, \tilde{u}_{n,e}^k)$ and $f_{i_n^b}(\tilde{x}_{n,b}^k, \tilde{u}_{n,e}^k)^2$ are evaluated in terms of known moments of the arguments

 - Note: SCORE should be run in the base layer as well
Solution to the Non-linearity Problem

- The base layer interval \tilde{I}_n^b can be decomposed into random and deterministic parts:
 $$\tilde{I}_n^b = \tilde{x}_{n,b}^k, m + [-\delta_1, \delta_2],$$
 where $[-\delta_1, \delta_2]$ is completely determined by the base layer quantization index i_n^b

- $f(\tilde{I}_n^b, \tilde{u}_{n,e}^k,m)$ can be represented as $f_{i_n^b}(\tilde{x}_{n,b}^k, m, \tilde{u}_{n,e}^k,m)$

- $f_{i_n^b}(\tilde{x}_{n,b}^k, m, \tilde{u}_{n,e}^k,m)$ approximated by Taylor series expansion of $f_{i_n^b}(x, u)$ about $(E\{\tilde{x}_{n,b}^k,m\}, E\{\tilde{u}_{n,e}^k,m\})$, retaining only up to the second order terms

- Expectations of $f_{i_n^b}(\tilde{x}_{n,b}^k, m, \tilde{u}_{n,e}^k,m)$ and $f_{i_n^b}(\tilde{x}_{n,b}^k, m, \tilde{u}_{n,e}^k,m)^2$ are evaluated in terms of known moments of the arguments
 - Note: SCORE should be run in the base layer as well

- Recursions for the remaining coding modes are discussed in the paper
Estimation Theoretic Concealment

- Estimation theoretic prediction inspires an approach for optimal enhancement layer concealment at the decoder when the base layer is received
 - The base layer provides the interval \tilde{I}_n^b
 - The base layer motion vector points to a motion reference in the prior enhancement layer reconstruction $\tilde{u}_{n,c}^{k,m}$
 - The optimal concealment of the transform coefficient at the enhancement layer is $f(\tilde{I}_n^b, \tilde{u}_{n,c}^{k,m})$

- SCORE recursions at the encoder naturally account for usage of ET concealment at the decoder
 - Note: ET concealment is also not compatible with ROPE

- Provides an additional shot of performance
Results: The Competing Systems

- State-of-the-art: H.264/SVC with multiloop prediction at enhancement layer, optimized via ROPE - **H.264/MLOOP-ROPE**

- Proposed system: ET-SVC optimized via SCORE - **ET-SVC-SCORE**

- Both competitors use the same base layer: H.264-ROPE

- Note: SCORE is run in parallel at the base layer but does not influence coding decisions
Sequence *foreman* at *QCIF* resolution: the base layer is encoded at 128 *kbps*, and transmitted at packet loss rate 1% and the enhancement layer has a packet loss rate of 5%.

Similar performance gains observed for other sequences.
Sequence *coastguard* at *QCIF* resolution: the base layer bit-rate is 170 *kbps*; the enhancement layer bit rate is 340 *kbps*

- The gain at 0% PLR is primarily due to ET-SVC
- This gain is maintained as the PLR increases due to the optimization of coding decisions via SCORE
Proposed a transform-domain approach to efficient and robust scalable video coding that is a union of optimal compression via ET-SVC and accurate EED estimation via SCORE.

SCORE overcomes intricacies of transform domain EED estimation that arise due to motion compensation references frequently being off-grid.

SCORE naturally accommodates the non-linear transform-domain operations of ET-SVC via suitable approximation and the usage of ET concealment at the decoder.

The proposed unified system provides significant performance gains over a competing state-of-the-art pixel-domain SVC approach that is optimized via ROPE.
Thanks