Learning structured outputs
Reinforcement learning
Document mapping

P. Gallinari

F. Maes, L. Denoyer

Patrick.gallinari@lip6.fr
www-connex.lip6.fr

University Pierre et Marie Curie – Paris – Fr
Outline

- Motivation and examples
- Global approaches for structured prediction
 - Generative models
 - Discriminant models
- Reinforcement learning for structured prediction
- Experiments
 - Document mapping
Structured prediction

- Prediction of structured objects
 - Object: set of interdependent variables

\[X = \text{STRUCTURE} \]
\[Y = \text{STRUCTURE} \]
Structured prediction

- Structured prediction present in different areas
 - Biology
 - Natural language processing
 - Translation
 - Information retrieval
 - Reranking, diversity, ...
 - Social networks
 - Data bases, Web, etc
Machine learning for structured prediction

- **Learning**
 - From a set of examples learn to map input data onto a structured representation

- **Inference**
 - Predict a structured output for a new input

- **Challenge**
 - Combinatorial size of the output space
 - e.g. all potential
 - Labelings of a sequence, tree or graph
 - Parse trees for a sentence
 - Translations for an input sentence
Formalization

- Inputs $x \in X$, outputs $y \in Y$
- Training set

$$D = \left\{ \left(x^{(i)}, y^{(i)} \right) \right\}_{i \in \{1, \ldots, n}\}$$

- Loss function

$$\Delta : Y \times Y \to R$$

- Measures the quality of the prediction
- Application dependent
Global models

- General idea
 - Training
 - Learn a score function $F : \mathbf{X} \times \mathbf{Y} \rightarrow R$ so as to rank potential outputs
 - F trained to optimize some loss function
 - Inference
 - Solve

- Combinatorial output space issue
 - $|\mathbf{Y}|$ sometimes exponential
 - Argmax is often intractable
 - All models make strong hypothesis
 - output structure
 - cost function
 - Type of structure prediction problem

\[y^* = f(x) = \arg \max_{y \in \mathbf{Y}} F(x, y, \theta) \]
Global models: generative

- Examples
 - Hidden Markov Models and extensions, Probabilistic Context Free grammars, Tree and Graph models

- Hypothesis
 - Local dependency hypothesis
 - On the outputs (Markov) and the inputs
 - Cost function
 - Usually joint likelihood
 - Decomposes, e.g. sum of local cost on the subparts

- Inference and learning usually use dynamic programming
 - PCFGs, decoding Complexity is $O(m^3n^3)$, $n =$ length of the sentence, $m =$ # non terminals in the grammar
Global models: discriminant

- Example
 - Structured Perceptron, Conditional Random Fields, Large margin methods, ...
 - Encode potential long term dependencies among and between input and output
 - Nice convergence properties + generalization bounds

- Hypothesis
 - Decomposability of features set (outputs) and of the loss function
 - Learning requires a decoding step at each iteration
 - Dynamic programming
 - Same complexity issue as generative models
Exemple: joint (input, output) representation

- Parsing (Tsochantaridis et al. 2005)

\[F : \text{linear function} \]

\[F_\theta(x, y) = \langle \Phi(x, y), \theta \rangle \]

Inference

\[\arg \max_{y \in Y} F(x, y, \theta) \]
Incremental models
General idea

- New paradigm in machine learning
 - Instead of solving a global prediction problem
 \[y^* = f(x) = \arg \max_{y \in Y} F(x, y, \theta) \]
 - The structured output will be built incrementally
 - \(\hat{y} = (\hat{y}_1, \hat{y}_2, ..., \hat{y}_T) \)

- Inference
 - Compute a trajectory in a prediction space

- Training
 - Learn to explore the prediction space
Example : sequence labelling

Example

Input sequence 〇 〇 〇

2 labels R et B

Search space :

(input sequence x {sequences of labels})

A node represents a state in the search space
Inference and learning

- Inference: decide a trajectory in the search space
 - Suppose we have a **policy** function \(\Pi \) which decides for each state which **action** to take
 - Inference could be performed by a greedy algorithm
 - \(\hat{y}_1 = F(x, \cdot) \), \(\hat{y}_t = F(\hat{y}_1, \ldots, \hat{y}_{t-1}) \), \ldots, \(\hat{y}_T = F(\hat{y}_1, \ldots, \hat{y}_{T-1}) \)
 - \(\hat{y} = F(\hat{y}_1, \ldots, \hat{y}_T) \)
 - Solves the argmax problem - No dynamic programming needed

- Training
 - Learn to move in the search space
 - Supervision?
Precursors
Incremental Parsing, Collins 2004
Laso, SEARN, Daume et al. 2005, 2006

Supervision Assumptions

Optimal learning trajectories
We have access to the sequences of optimal actions for all training examples [Collins et Roark, 2004, Daume et al, 2005]

Optimal learning policy
We have access to optimal actions, whatever the current state is, for all training examples [Daume et al, 2006]
Reinforcement learning for SP

- Formalizes incremental learning ideas using
 - Markov Decision Processes as model
 - Sequential decision making
 - Reinforcement Learning for training

- Provides a general framework for incremental learning
- Many RL algorithm could be used for training
- Possible to learn with weak assumptions
 - Potentially allows dealing with a large class of problems
Markov Decision Process

- **States** S: input + partial output
- **Actions** A: modifications of the partial output
- **Transitions**: $T : S \times A \rightarrow S$
 - modify the partial output
- **Rewards**: quality of prediction
Structured prediction as a policy learning problem

- Maximizing the expectation of the total reward is equivalent to

- Minimizing the structured prediction loss Δ
Specificity of structured prediction
MDP: partially observable reward

- The reward function is only partially observable: limited set of training (input, output)
- Different from classical decision problems
Learning the MPDP

- The reward function cannot be computed on the whole MDP
- Approximated RL
 - Learn the policy on a subspace
 - Generalize to the whole space
- The policy is learned as a linear function

\[\pi(s, a) = \arg \max_{a \in \text{Actions}} \langle \Phi(s, a), \theta \rangle \]

- \(\Phi(s, a) \) is a joint description of \((s, a)\)
- \(\theta \) is a parameter vector

- Learning algorithm
 - Sarsa, OLPOMDP, etc
Feature function

- $\Phi(s, a)$ describes state-action pairs (s, a)
- $\Phi(s, a)$: large size, sparse vector of (s, a) characteristics
 - States: content and structure
 - Actions: label to choose

```
state =

<table>
<thead>
<tr>
<th>H</th>
<th>E</th>
<th>L</th>
</tr>
</thead>
</table>

\begin{align*}
\phi(s, a) &= \begin{bmatrix}
0 \\
0 \\
\vdots \\
0 \\
\vdots \\
1 \\
1 \\
0 \\
\vdots \\
0 \\
\vdots \\
0 \\
0 \\
\vdots \\
0 \\
0 \\
0 \\
\end{bmatrix} \\
\text{action} &= A \land \ldots \\
\text{action} &= L \land \text{pixel 1,1 is black} \\
\text{action} &= L \land \text{pixel 2,3 is black} \\
\text{action} &= L \land \text{pixel 8,16 is black} \\
\text{action} &= L \land y(t-1) = K \\
\text{action} &= L \land y(t-1) = L \\
\text{action} &= L \land y(t-2) = A \\
\text{action} &= L \land y(t-4) = Z \\
\text{action} &= L \land y(t-4) = \text{before} \\
\text{action} &= Z \land \ldots
\end{align*}

action = \text{choose 'L'}
```
Benchmark on sequence labeling

Order Free

Baselines
- Independent classifiers, CRFs, SVMstruct

Reinforcement learning is competitive with supervised learning although it does not exploit the full supervised learning hypothesis.
Learning tree mapping

- Learn transformations from one tree structured format to another one
 - General problem
 - Specific application
 - Document structuration
 - Flat text → structured format
 - HTML → XML
 - XML → XML
 - Motivations
 - Structured information retrieval, Information extraction, Document conversion,
Classes of transformation

One-to-one tree transformation

Tree transformation with unaltered text
Difficulties

- Central issue: complexity
 - Large number of potential mappings
 - Both content and structure
 - Large state space
 - Large documents (e.g. some Wikipedia pages)
 - No optimal learning policy, no optimal learning trajectory
 - Global models do not scale
States and actions

- Process input leaves one at a time
- State
 - Input document and partial output tree
- Action
 - Attach a path ending with the current leaf to a position in the current partial tree
 - Paths and positions are inferred from the data
 - $\Phi(a,s)$ encodes a series of potential (state, action) pair descriptors
- Loss: F-Score for trees
States and actions: illustration
Welcome to INEX

This is a footnote
Example

Francis MAES

Title of the section

Welcome to INEX

This is a footnote
Welcome to INEX

This is a footnote

Example

Francis MAES

Title of the section

HTML

BODY

P

FONT

TITLE

IT

H1

P

FONT
Example

Francis MAES

Title of the section

Welcome to INEX

This is a footnote

Example

Title of the section

Francis MAES

Document
Example
Francis MAES
Title of the section
Welcome to INEX
This is a footnote

Example
Title of the section
Welcome to INEX
Francis MAES

HTML
HEAD
BODY
FONT

TITLE
IT
H1
P

TITLE
TEXT
SECTION
AUTHOR

2010-05-19
Constraints

- Needed to limit the exploration space
 - Allow only paths that appear in the training set
 - Allow only sibling labels appearing in the training set
 - Limited displacement of leaves...
Features

- Sparse description in high dimensional space
 - Use a few manually defined generation rules
 - Generate large set of features

- Features
 - Input content
 - Input path
 - Partial output path
 - Output siblings
Benchmark - data sets

<table>
<thead>
<tr>
<th>Corpus</th>
<th>Formats</th>
<th>Size</th>
<th>Internal Nodes</th>
<th>Leaves</th>
<th>Depth</th>
<th>Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>RealEstate</td>
<td>XML → XML</td>
<td>2,367</td>
<td>≈ 33</td>
<td>≈ 19</td>
<td>≈ 6</td>
<td>37</td>
</tr>
<tr>
<td>Mixed-Movie</td>
<td>HTML → XML</td>
<td>13,048</td>
<td>≈ 64</td>
<td>≈ 39</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>Shakespeare</td>
<td>Text → XML</td>
<td>750</td>
<td>≈ 236</td>
<td>≈ 194</td>
<td>≈ 4.3</td>
<td>7</td>
</tr>
<tr>
<td>Inex-Ieee</td>
<td>Text → XML</td>
<td>12,107</td>
<td>≈ 650</td>
<td>≈ 670</td>
<td>≈ 9.1</td>
<td>139</td>
</tr>
<tr>
<td>Wikipedia</td>
<td>HTML → XML</td>
<td>10,681</td>
<td>≈ 200</td>
<td>≈ 160</td>
<td>≈ 7.7</td>
<td>256</td>
</tr>
</tbody>
</table>
Benchmark – Performance measures

$$F_{structure} = \frac{2 \times 3}{5 + 5} = 60\%$$

$$F_{path} = \frac{2 \times 1}{3 + 4} \approx 28.57\%$$

$$F_{content} = \frac{2 \times 2}{3 + 4} \approx 57.14\%$$
Small corpora

<table>
<thead>
<tr>
<th>Corpus</th>
<th>Score</th>
<th>RL</th>
<th>Baselines</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sarsa</td>
<td>OLPOMDP</td>
<td>$\pi^{\text{greedy}}_{\text{structure}}$</td>
<td>$\pi^{\text{greedy}}_{\text{path}}$</td>
</tr>
<tr>
<td></td>
<td>$F_{\text{structure}}$</td>
<td>99.54</td>
<td>99.99</td>
<td>87.09</td>
<td>97.09</td>
<td>3.27</td>
</tr>
<tr>
<td></td>
<td>F_{path}</td>
<td>99.87</td>
<td>99.99</td>
<td>84.42</td>
<td>100</td>
<td>3.91</td>
</tr>
<tr>
<td></td>
<td>F_{content}</td>
<td>99.88</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>5.10</td>
</tr>
<tr>
<td>REAL ESTATE</td>
<td></td>
<td></td>
<td>Sarsa</td>
<td>OLPOMDP</td>
<td>$\pi^{\text{greedy}}_{\text{structure}}$</td>
<td>$\pi^{\text{greedy}}_{\text{path}}$</td>
</tr>
<tr>
<td></td>
<td>$F_{\text{structure}}$</td>
<td>96.03</td>
<td>95.88</td>
<td>98.65</td>
<td>75.16</td>
<td>11.34</td>
</tr>
<tr>
<td></td>
<td>F_{path}</td>
<td>97.88</td>
<td>97.72</td>
<td>98.91</td>
<td>100</td>
<td>16.47</td>
</tr>
<tr>
<td></td>
<td>F_{content}</td>
<td>98.87</td>
<td>98.40</td>
<td>99.83</td>
<td>100</td>
<td>18.25</td>
</tr>
</tbody>
</table>

RL learns and generalize Provides better strategies than greedy baselines
Large corpora

<table>
<thead>
<tr>
<th>Corpus</th>
<th>Score</th>
<th>RL SARSA</th>
<th>(\pi^{\text{greedy}}_{\text{structure}})</th>
<th>Baselines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\pi^{\text{greedy}}_{\text{path}})</td>
</tr>
<tr>
<td>INEX-IEEE</td>
<td>(F_{\text{structure}})</td>
<td>67.5</td>
<td>76.32</td>
<td>49.94</td>
</tr>
<tr>
<td></td>
<td>(F_{\text{path}})</td>
<td>74.4</td>
<td>39.23</td>
<td>97.20</td>
</tr>
<tr>
<td></td>
<td>(F_{\text{content}})</td>
<td>75.8</td>
<td>82.91</td>
<td>97.20</td>
</tr>
<tr>
<td>WIKIPEDIA</td>
<td>(F_{\text{structure}})</td>
<td>65.6</td>
<td>57.37</td>
<td>23.53</td>
</tr>
<tr>
<td></td>
<td>(F_{\text{path}})</td>
<td>74.3</td>
<td>2.28</td>
<td>32.28</td>
</tr>
<tr>
<td></td>
<td>(F_{\text{content}})</td>
<td>80.2</td>
<td>72.92</td>
<td>39.34</td>
</tr>
</tbody>
</table>

Mean: 700 nodes per doc
150 to 250 labels

Training: days
Inference: second
More

☐ This talk
 ■ Machine learning journal 2009

☐ Library
 ■ Journal of machine learning research 2009

☐ Other problems – similar approach
 ■ Graph labeling : ECML 2009
 ■ Learning best first search heuristics