Best Practices for Multilingual Linked Open Data

Jose Emilio Labra Gayo
University of Oviedo, Spain
http://www.di.uniovi.es/~labra
About me

WESO Research Group (Web Semantics Oviedo, since 2004)

Several projects involving Multilingual LOD

Example: EU Public procurement notices (MOLDEAS)

Catalog of product schema clasifications (1842053 triples)

Common Procurement vocabulary (803311 triples)

23 EU languages
Towards the web of data

Web of documents
Unit of information: Web page (HTML)
Human readable
Challenge: Multilingual pages

Web of Data
Unit of information: data (RDF)
Machine readable
Intrinsically Multilingual
Example

Intrinsically multilingual
Multilingual data

Data that appears in a multilingual context

- It contains labels/comments
- Human-readable information
- Using different languages/conventions
Example of Multilingual Data

Unit of information: data (RDF)
Human + Machine readable
New Challenge: Multilingual Web of Data

Linked Open Data

Principles on how to publish data
Increasing adoption
Best practices for LOD

Several proposals:

- Linked data book [Heath, Bizer, 2011]
- Linked data patterns [Dodds, Davis, 2012]
- Best Practices for Publishing Linked Data [Hyland et al]
- SemWeb Rules of thumb [R. Cyganiak]
- etc. . .

In this talk

Best practices affected by multilinguality
Multilingual LOD practices

1. Design a good URI scheme
2. Model resources, not labels
3. Use human-readable info
4. Labels for all
5. Use Multilingual literals
6. Content negotiation
7. Literals without language
8. Multilingual vocabularies

1. Design a good URI scheme

Cool URIs

Don't change
Identify things
If possible, use human-readable URIs

http://www.di.uniovi.es/~labra
1. Design a good URI scheme

Use IRIs?

Most datasets use only URIs

IRIs may be difficult to maintain

Domain names, phising, …

IRI support in current libraries

Human-readability?

Հայաստան

http://dbpedia.org/resource/Հայաստան

Armenia

http://dbpedia.org/resource/Armenia
2. Model resources, not labels

Define URIs only for resources

- Resources do not depend on a given language
- Assign labels to those resources

Do not mint separate URIs for labels
2. Model resources, not labels

2. Model resources, not labels

Some domains may require to model labels:

- Thesaurus
- Assertions and relations between labels

Example: SKOS-XL labels

Resources of type sxosxl:Label

Labels are URI-identifiable
2. Model resources, not labels

Mint different URIs for each language?

Localized URIs

Armenia

Language dependant URIs

Armenia/en

Armenia/hy
3. Use human-readable info

Not only machine-readable information
Combine machine & human-readable info
Human-readable info must be multilingual
3. Use human-readable info

Facilitates search over the web of data

Linked data browsing

Applications can display labels instead of URIs

Some common properties:

hr
h hr
h hr h t
h t
g
3. Use Human-readable info

What is the right level of textual information?
Balance between HTML/RDF world
4. Labels for all

Provide labels for all URIs

Individuals / Concepts / Properties

Not just the main entities

Displaying labels becomes easier and faster

Reduce number of requests
4. Labels for all

It may be difficult to select the right label
Don't provide more than one preferred label
Not feasible for some datasets
Only 38% non-information resources have labels

Avoid camel case or similar notations

[B. Ell et al, 2011]
5. Use Multilingual literals

Use language tags

Select the right IETF language tag (RFC 5646)

Example:

n : h td
n : h
n : h a 8 : pni ht

Օվիեդոյի համալսարանում
5. Use Multilingual literals

Multilingual literals & SPARQL

```
?tttr p??? :g??h ????#p???

?er??p??t??p

?er??p??t??p

n????????n????

n????????n????

2

2
```

Returns Nothing

Returns ggg##p???
5. Use Multilingual literals

Underused feature

- 4.78% non info-resources have one language tag
- Only 0.7% datasets contain several language tags

Most commonly language used:

- 44.72% (en), 5.22% (de), 5.11% (fr), 3.96% (it),...

[B.Ell et al, 2011]
5. Use Multilingual literals

What about longer descriptions:

CDATA like or XML literals?

Reuse existing practices in XML I18n

Problems:

- Gap between descriptions and RDF model
- SPARQL maybe a challenge
6. Content negotiation

Use HTTP Accept-Language
Return different sets of labels
Reduce load in client applications
6. Content negotiation

No Accept-Language declaration (all)
6. Content negotiation
6. Content negotiation
6. Content negotiation

Implementation issues

Return equivalent representations for each language

Content represented by spanish labels
equivalent to

Content represented by english labels
7. Literals without language tag

Include literals without language-tag

SPARQL queries are easier

Example:
7. Literals without language tag

Selecting a default language maybe controversial

How to declare the primary language of a dataset?
8. Multilingual vocabularies

Link to existing vocabularies

Quality selection criteria for vocabularies

Vocabularies should contain descriptions in more than one language

[Hyland et al, 2012]
8. Multilingual vocabularies

What to do if they are not localized?
Enrich vocabularies with translated extensions?
Example:

drprptphhrnnng
8. Multilingual vocabularies

Beware of cross-lingual mappings

Example:

Concept of professor in English culture

Concept of professor in Spanish culture

Possible solutions:
Ontology-lexicon, Lemon Model

Other issues not covered

Unicode support in N-Triples
Language declarations in Microdata

Internationalization topics:

Text direction
Ruby annotations
Notes for localizers
Translation rules
Conclusions

LOD adoption offers new challenges
Web of data is not just for machines
At the end, human users will employ LOD applications.

Human users speak different languages

Challenge:

Best? practices for multilingual LOD
Acknowledgements

Aidan Hogan
Richard Cyganiak
Basil Ell
Jose María Álvarez Rodríguez
Elena Montiel
Jeni Tennison
References

[Cyganiak] SemWeb Rules of thumb
http://www.w3.org/wiki/User:Rcygania2/RulesOfThumb

[Dodds, Davis, 2012] Linked data patterns
http://patterns.dataincubator.org/book/

[Ell et al, 2011] Labels in the Web of Data, ISWC 2011

[Heath, Bizer, 2011] Linked data: Evolving the Web into a Global Data Space
http://linkeddatabook.com/editions/1.0/

[Hyland et al] Best Practices for Publishing Linked Data
https://dvcs.w3.org/hg/gld/raw-file/default/bp/index.html#internationalized-resource-identifiers

[Hyland et al] Linked data cookbook. Open Government Linked Data
http://www.w3.org/2011/gld/wiki/Linked_Data_Cookbook

End of presentation