Learning the Structure of Deep, Sparse Graphical Models

Hanna M. Wallach
University of Massachusetts Amherst
wallach@cs.umass.edu

Joint work with Ryan Prescott Adams & Zoubin Ghahramani
Deep Belief Networks

“Deep belief nets are probabilistic generative models that are composed of multiple layers of stochastic latent variables. The latent variables typically have binary values and are often called hidden units or feature detectors. [...] The lower layers receive top-down, directed connections from the layer above. The states of the units in the lowest layer represent a data vector.”

— Geoff Hinton ('09) Scholarpedia
Network Structure

Structural questions:
- # units in each hidden layer?
- # hidden layers?
- What network connectivity?
- What type(s) of unit behavior?

⇒ Goal: learn the structure
Network Structure

Structural questions:
- # units in each hidden layer?
- # hidden layers?
- What network connectivity?
- What type(s) of unit behavior?

⇒ Goal: learn the structure
Network Structure

Structural questions:
• # units in each hidden layer?
• # hidden layers?
• What network connectivity?
• What type(s) of unit behavior?

⇒ Goal: learn the structure
Network Structure

Structural questions:

- # units in each hidden layer?
- # hidden layers?
- What network connectivity?
- What type(s) of unit behavior?

⇒ Goal: learn the structure
Network Structure

Structural questions:
- # units in each hidden layer?
- # hidden layers?
- What network connectivity?
- What type(s) of unit behavior?

⇒ **Goal:** learn the structure
Network Structure

Structural questions:

- # units in each hidden layer?
- # hidden layers?
- What network connectivity?
- What type(s) of unit behavior?

⇒ **Goal:** learn the structure
This Talk

A nonparametric Bayesian approach for learning the structure of a layered, directed, deep belief network.

Geoff Hinton + [Mike Jordan] + [Zoubin Ghahramani] + [Yee Whye Teh]
Outline

- Background: finite single-layer networks
- Infinite belief networks:
 - Learning the number of hidden units in each layer
 - Learning the number of hidden layers
 - Learning the type(s) of unit behavior
- Experimental results
Outline

- Background: finite single-layer networks
Finite Single-Layer Networks

- Use a binary matrix to represent the edge structure (connectivity) of a directed graph

- A prior distribution on binary matrices \Rightarrow a prior distribution on single-layered belief networks
Finite Single-Layer Networks

- An infinite number of columns \Rightarrow an infinite number of hidden units
- Can we let these binary matrices to have an infinite number of columns?

\Rightarrow Yes: Indian buffet process
Outline

- Background: finite single-layer networks
- Infinite belief networks:
 - Learning the number of hidden units in each layer
Infinitely-Wide Layers

- Use an Indian buffet process (IBP) as a prior on binary matrices with **countably infinite columns**:
 - Unbounded number of hidden units
- Posterior inference determines the subset of hidden units responsible for the observations
- The IBP ensures that the matrices are extremely sparse: always a finite number of nonzero columns
 - Finite number of actively-used hidden units

[Wood, Griffiths & Ghahramani, '06]
The Indian Buffet Process

- First customer tries $\text{Poisson}(\alpha)$ dishes

Parameters: α and β
The Indian Buffet Process

First customer tries Poisson(α) dishes

n^{th} customer tries:
- Previously-tasted dish k with probability $n_k / (\beta + n - 1)$
- Poisson($\alpha\beta / (\beta + n - 1)$) completely new dishes

Parameters: α and β
The Indian Buffet Process

• First customer tries Poisson(\(\alpha\)) dishes
• \(n^{th}\) customer tries:
 - Previously-tasted dish \(k\) with probability \(n_k / (\beta + n - 1)\)
 - Poisson(\(\alpha\beta / (\beta + n - 1)\)) completely new dishes

[Ghahramani et al., '07]
The Indian Buffet Process

- First customer tries $\text{Poisson}(\alpha)$ dishes
- n^{th} customer tries:
 - Previously-tasted dish k with probability $\frac{n_k}{\beta + n - 1}$
 - $\text{Poisson}(\frac{\alpha \beta}{\beta + n - 1})$ completely new dishes

Parameters: α and β
Properties of the IBP

- For a finite number of customers, there will always be a finite number of dishes tasted
- Infinitely exchangeable rows and columns
- There is a related “stick-breaking” construction
- Popular for shared latent feature (hidden cause) models
- Latent features can be added/removed from a model without dimensionality-altering MCMC methods
Single-Layer Belief Networks

[Wood, Griffiths & Ghahramani, '06]

customers = observed units
dishes = hidden units

Parameters: α and β

[Wood, Griffiths & Ghahramani, '06]
Single-Layer Belief Networks

[Wood, Griffiths & Ghahramani, '06]

- Parameters: \(\alpha \) and \(\beta \)
- "customers" = observed units
- "dishes" = hidden units
Single-Layer Belief Networks

"customers"

"dishes"

Parameters: α and β

customers = observed units
dishes = hidden units

[Wood, Griffiths & Ghahramani, '06]
Single-Layer Belief Networks

“customers”

“dishes”

Parameters: α and β

customers = observed units
dishes = hidden units

[Wood, Griffiths & Ghahramani, '06]
Single-Layer \Rightarrow Multi-Layer?

- Single-layer belief networks have limited utility:
 - Hidden units are independent a priori
- Deep networks = multiple hidden layers:
 - Hidden units are dependent a priori

\Rightarrow **Goal**: extend the IBP in order to construct deep belief networks with unbounded width and depth
Outline

- Background: finite single-layer networks
- Infinite belief networks:
 - Learning the number of hidden units in each layer
 - Learning the number of hidden layers
Multi-Layer Belief Networks
Multi-Layer Belief Networks
Multi-Layer Belief Networks
Multi-Layer Belief Networks
Layered Belief Nets

- We could use a finite number of IBPs
- But... what about using an infinite recursion:
 - Every “dish” is a “customer” in another restaurant
 - Unbounded number of layers, each of unbounded width
- Remarkably, we will always hit a layer with zero units!
 - Always stop at a finite but unbounded depth
- We don't have to make an ad hoc choice of depth
The Cascading IBP (CIBP)

- A stochastic process which results in an infinite sequence of infinite binary matrices
 - Each matrix is exchangeable in both rows and columns

- How do we know the CIBP converges?
 - The number of dishes in one layer depends only on the number of customers in the previous layer
 - Can prove that this Markov chain reaches an absorbing state in finite time with probability one
CIBP Properties

• For a unit in layer $m+1$:
 - Expected # of parents: α
 - Expected # of children: $c(\beta, K_m) = 1 + (K_m - 1) / (1 + \beta)$
 - $\lim_{\beta \to 0} c(\beta, K_m) = K_m$ and $\lim_{\beta \to \infty} c(\beta, K_m) = 1$

• We do not want network properties to be constant at all depths, e.g., some levels should be sparser than others:
 - Each layer can have different IBP parameters α and β so long as they are bounded from above
Samples from the CIBP Prior

(a) $\alpha = 1, \beta = 1$
(b) $\alpha = 1, \beta = \frac{1}{2}$
(c) $\alpha = \frac{1}{2}, \beta = 1$
(d) $\alpha = 1, \beta = 2$
(e) $\alpha = \frac{3}{2}, \beta = 1$
Outline

- Background: finite single-layer networks
- Infinite belief networks:
 - Learning the number of hidden units in each layer
 - Learning the number of hidden layers
 - Learning the type(s) of unit behavior
Learning Unit Behavior

- Unit activations are weighted linear sums with biases
- Nonlinear Gaussian belief network approach:
 \[
 \text{sigmoid}(\text{activation} + \text{Gaussian noise with precision } \nu)
 \]

[Frey, '97; Frey & Hinton, '99]
Priors and Inference

- Layer-wise Gaussian priors on weights and biases
- Layer-wise Gamma priors on noise precisions
- Layer-wise parameters tied via global hyperparameters
- Markov chain Monte Carlo inference:
 - Parameter inference is easy given the network structure
 - Edges added/removed using Metropolis-Hastings
Outline

- Background: finite single-layer networks
- Infinite belief networks:
 - Learning the number of hidden units in each layer
 - Learning the number of hidden layers
 - Learning the type(s) of unit behavior
- Experimental results
Experimental Results

- **Olivetti Faces**: 350+50 images of 40 faces; 64x64
 - Inferred: ~3 hidden layers; 70 units per hidden layer

- **MNIST Digits**: 50+10 images of 10 digits; 28x28
 - Inferred: ~3 hidden layers; 120, 100, 70 units

- **Frey Faces**: 1865+100 images of Brendan Frey; 20x28
 - Inferred: ~3 hidden layers; 260, 120, 35 units
Olivetti: Reconstructions & Features
Olivetti: Fantasies & Activations
MNIST Digits
Frey Faces
Summary

- United deep belief networks & Bayesian nonparametrics
- Introduced the CIBP & proved convergence properties
- Addressed 3 issues with deep belief networks:
 - Number of units in each hidden layer
 - Number of hidden layers
 - Type(s) of hidden unit behavior
Thanks!

Ryan Prescott Adams & Zoubin Ghahramani

Acknowledgements: Brendan Frey, David MacKay, Iain Murray, Radford Neal