Modeling Diffusion in Social Networks using Network Properties

Minh-Duc LUU*, Ee-Peng LIM,
Tuan-Anh HOANG, Freddy Chong Tat CHUA
Why Diffusion in Social Networks?

Diffusion of items (videos, news, photos, etc) is important and ubiquitous in social networks.

Proper models of diffusion can predict:

- Rate of adoption at a particular time
- The time of peak demand
- The magnitude of peak demand

Applications of Diffusion Models in Telecommunications, Nigel Meade

Why Modeling Diffusion using Network Properties?

For item diffusion we have micro and macro models.

<table>
<thead>
<tr>
<th></th>
<th>Micro models</th>
<th>Macro models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work at</td>
<td>Individual level</td>
<td>Network level</td>
</tr>
<tr>
<td>Representatives</td>
<td>Independent Cascade (IC)(^1),</td>
<td>Bass Model(^3) and its extensions</td>
</tr>
<tr>
<td></td>
<td>Linear Threshold (LT)(^2)</td>
<td></td>
</tr>
<tr>
<td>Parameters</td>
<td>Local, each user has his own parameters</td>
<td>Global, for the whole network</td>
</tr>
<tr>
<td>Network properties</td>
<td>Exploit (+)</td>
<td>Do NOT exploit (-)</td>
</tr>
<tr>
<td>No. of parameters</td>
<td>So many (-)</td>
<td>Just a few (+)</td>
</tr>
</tbody>
</table>

\(^1\) Goldenberg et al. (2001) *Talk of the Network: A Complex Systems Look at the Underlying Process of Word-of-Mouth*

\(^2\) Granovetter, M. (1978) *Threshold Models of Collective Behavior*

\(^3\) Bass, F. M. (1969) *A new Product Growth Model for Consumer Durables*
Research Questions

How can macro models exploit network properties (e.g. degree distribution)?

In this work:
Q1) How to model diffusion in a network given its degree distribution?
Q2) How to combine parameters of diffusion and of degree distribution to give a better model?
Concepts & Notations

- N: network size.
- $f(t)$: instantaneous fraction of adopters at time t
- $F(t)$: cumulative fraction of adopters at time t

 \[f(t) = F'(t) \]

- a_t: adoption at t, A_t: adoption before t.

Observe that:

\[
\frac{f(t)}{F(t)} = (1 - F(t)) \cdot \mathbb{E}[P(a_t | \overline{A_t})]
\]

Ordinary differential equation (ODE) linking $F(.)$, $P(.)$:

\[
F'(t) = (1 - F(t)) \cdot P(a_t | \overline{A_t})
\]

Goal: estimate the adoption probability $P(.)$ as a function of $F(.)$
Estimation of Adoption Probability

General Case

Contributions from external & internal influences are weighted with w_e and $1-w_e$ respectively.

$$P(a_t | \overline{A}_t) = w_e \cdot P_{ext}(a_t | \overline{A}_t) + (1-w_e) \cdot P_{int}(a_t | \overline{A}_t)$$

Internal comes from WOM (word of mouth)
Bass Model (BM)

Assumptions of BM:

B1) Each user can influence every other user.

\[|u's \text{ adopted neighbors} | = N \cdot F(t), \quad \forall u, \forall t \]

B2) Internal influence is proportional to No. of adopted neighbors:

\[P_{\text{int}}(a_t | \overline{A_t}) = q_1 \cdot N \cdot F(t) \]

\[\Rightarrow P(a_t | \overline{A_t}) = p + q \cdot F(t) \quad (*) \]

where \(p = w_e \cdot p_e \) and \(q = (1 - w_e) \cdot q_1 \cdot N \)

(*) combines with the ODE

\[F(t) = \frac{e^{[(p+q)t]} - 1}{e^{[(p+q)t]} + q / p} \]

\[f(t) = F'(t) = \frac{(p+q)^2}{p} \cdot e^{[(p+q)t]} \cdot \left\{ e^{[(p+q)t]} + q / p \right\}^2 \]

\[\rightarrow \text{Bass Model (1969)} \]
Bass Model (cont.)

“...Bass model ignores the network structure...”
[Xiaodan S. et al, WWW 07]

B1) Each user can influence/influenced every other user

Each user can influence/influenced only his friends
→his adoption prob. depends on his degree
Bass Model (cont.)

http://serial.innovatiasystems.eu/cms/
Adoption Probability for Specific Degree Distributions

• Given any degree distribution $P(k)$, we obtained the formula:

\[
P_{\text{int}}(a_t | A_t) = \sum_{k=1}^{N-1} P(k) \sum_{j=0}^{k} \binom{k}{j} F_t^j (1 - F_t)^{k-j} P(a_t | A_t, j)
\]

where $F_t \equiv F(t)$ and $P(a_t | A_t, j)$ is the prob of adopting given that a user has j adopted neighbors.

• Still keep B2), linear influence: \[P(a_t | A_t, j) = c \cdot j\]

where c is a constant.

To complete estimation, needs specific degree distributions!
Specific Degree Distributions

Power-law (scale free): \(P_{sf}(k) = \frac{1}{Z_{sf}} \cdot k^{-\alpha} = \frac{1}{\zeta(\alpha)} \cdot k^{-\alpha} \)

Exponential: \(P_{exp}(k) = \frac{1}{Z_{exp}} \cdot e^{-k/\lambda} = \left(1 - e^{-1/\lambda}\right) \cdot e^{-k/\lambda} \)

Pagel et al. BMC Evolutionary Biology
2007 7(Suppl 1):S16

Parameter of degree distribution: \(\alpha \) (power law) or \(\lambda \) (exponential)
Estimation of Internal Adoption Probability

Linear assumption & specific degree distribution provide estimations:

1) Scale free network:

\[P_{int}^{sf} (a_t \mid \overline{A}_t) = \frac{\zeta(\alpha - 1)}{\zeta(\alpha)} \cdot c \cdot F_t \]

where \(\zeta(\alpha) = \sum_{k=1}^{\infty} k^{-\alpha} \) is the Riemann Zeta function.

2) Exponential network:

\[P_{int}^{exp} (a_t \mid \overline{A}_t) = \frac{e^{-1/\lambda}}{1 - e^{-1/\lambda}} \cdot c \cdot F_t \]

These estimations \(\rightarrow \) two models in our work.
Proposed Models

1. SLIM (Scale-free Linear Influence Model): Scale-free network.
2. ELIM (Exponential Linear Influence Model): Exponential network

Remarks:
- Give more rigorous estimation of adoption probability by combining parameters of diffusion and of degree distribution.
- Give the same fitting error as BM though!
What is the problem?

\[f(t) = (1 - F(t)) \cdot \mathbb{E}[P(a_t | A_t)] \]

- Is it correct to use degree distribution of the whole network for \(P(k) \)?

 NO. Should use degree distribution over the set of non-adopters (NA).

- NA changes over time → its degree distribution also changes?

 YES.
Degree Distribution is Dynamic!!

Evolving Degree distribution (among non adopters)

Log(P(degree)) vs Log(degree)

Time 10 - Time 40

Synthetic scale-free network; 27,289 nodes and 27,031 edges ($\alpha_0=3$).

As time proceed, users with high/low degs are more/less likely to adopt and leave/stay NA set. Thus later distributions are more biased to low degrees.
Multi-Stage Model (MLIM)

For different time pts, need to employ different models. How to decide the proper model?

Heuristic approach: in a short duration, degree distribution does NOT significantly change.

- Divide diffusion process into n stages. Each has short duration (<10 time steps).
- For each stage, choose between SLIM and ELIM the one that gives smaller fitting error.

→ Multi-Stage Model
Experiments on Synthetic Data

- Network: 28,172 nodes; 34,578 edges ($\alpha=2.5$).
- Evaluation metrics: model-fitting error (LSE) & parameter-learning error.

(a) w_e in $\{0.05, 0.1, 0.2, 0.3, 0.4\}$

(b) c in $\{0.032, 0.064, 0.096, 0.12\}$
Experiments on Synthetic Data

\(n=1 \) corresponds to BM

\((c) \, n \in \{1, 4, 5, 8, 10\}\)
Real-world Dataset
From Goodreads network (www.goodreads.com), \(\approx 87 \)K users; 159,442 follow links

You have no updates from your friends yet.

Recent Updates From the Community

05/15

Alice gave ★★★★★☆ to:
Pudd'nhead Wilson and Other Tales (World's Classics)
by Mark Twain

Alice said: "I really didn't think I would enjoy this book....why did I ever think that?! AMAZING!!!! loved it."

5 minutes ago • comment • see review
Experiment Design

• Adopting a book ≈ writing review on it.
• Review data was collected for 73 popular books.
• Period: 05/2007 to 02/2011 (45 months).
• Filter out books with review data spans < 30 months → 20 books remain (Harry Potter 7, Breaking Dawn, …).

• Evaluation metric: ratio of model-fitting errors (LSE of MLIM over LSE of BM)
 → less than 1 shows improvement of our model.

Special thanks to Agus and Anh.T.H
Results for Top-20 Popular Books

- MLIM outperforms BM for all top-20 popular books.
- 75% of books have error ratios less than $\frac{1}{2}$.
Zoom-in for One Book

Result for book with ID=30183

Fitting result for *City of Ashes* by Cassandra Clare

MLIM provides **significant** improvement over BM in terms of fitting data.
Conclusion

• This work:
 – Proposed two models SLIM, ELIM for diffusion in scale-free and exponential networks respectively.
 – Proposed multi-stage model (MLIM) to deal with dynamic degree distribution.

• Future works:
 – Derive a more rigorous way to deal with dynamic degree distribution.
 – Replace linear influence by other (e.g. quadratic, exponential) influence?
 – Examine the effect of other network quantities on diffusion.
Adoption prob. for scale free and exponential network

\[
P_{sf}(a_t | \overline{A}_t) = w_e \cdot p_e + (1 - w_e) \cdot \frac{\zeta(\alpha - 1)}{\zeta(\alpha)} \cdot c \cdot F_t
\]

\[
P_{exp}(a_t | \overline{A}_t) = w_e \cdot p_e + (1 - w_e) \cdot \frac{e^{-1/\lambda}}{1 - e^{-1/\lambda}} \cdot c \cdot F_t
\]
Formulae of SLIM, ELIM

\[F_{SLIM}(t) = \frac{\exp[(p + q_{SLIM}) \cdot t] - 1}{\exp[(p + q_{SLIM}) \cdot t] + (q_{SLIM} / p)} \]

where \(p = p_e \cdot w_e \) and \(q_{SLIM} = (1 - w_e) \cdot \frac{\zeta(\alpha - 1)}{\zeta(\alpha)} \cdot c \)

\[F_{ELIM}(t) = \frac{\exp[(p + q_{ELIM}) \cdot t] - 1}{\exp[(p + q_{ELIM}) \cdot t] + (q_{ELIM} / p)} \]

where \(p = p_e \cdot w_e \) and \(q_{ELIM} = (1 - w_e) \cdot \frac{e^{-1/\lambda}}{1 - e^{-1/\lambda}} \cdot c \)