Cross-lingual named entity disambiguation for concept translation

Tadej Štajner
Jožef Stefan Institute

15 March 2012, Luxembourg
W3C Workshop: The Multilingual Web – The Way Ahead
Motivation

- Translating proper names
- ... can be problematic for statistical MT systems

- HTML5 translate attribute helps, but someone still needs to do the actual mark-up
Motivation (2)

- Depends on source and target language:
 - There are specific rules to translate (or transliterate) particular proper names or concepts
 - Sometimes, they should not even be translated
- Possible solution: figure out what entity is actually being mentioned and see if any existing translated expression exists for that entity:
 - Using a background knowledge base
 - Translates the problem into named entity disambiguation
Named entity disambiguation

Document

Entity

Label

Mention

FC Barcelona

Real

Barça

FC Barcelona

Real

http://dbpedia.org/resource/Real_Madrid

http://dbpedia.org/resource/RealNetworks

Ambiguous!

http://dbpedia.org/resource/FC_Barcelona
Knowledge bases

- Doing this requires good coverage of entities in the KB
- The usual choice is DBPedia
- Works well for the bigger languages (en)
 - What about languages with less coverage?
 - as of Jan 2012, English has 3.9M articles, Slovene has 132k*

*http://stats.wikimedia.org/EN/TablesArticlesTotal.htm
Cross-lingual named entity disambiguation

- What if the input document and the knowledge base are in different languages?
 - ... there is no knowledge base for a particular language
 - ... the proper knowledge base is too sparse

- Can we share these knowledge bases across languages, given that they have different coverage?
Important ranking features

- **Mention popularity** — \(P(\text{entity} | \text{mention}) \)
 - "Kashmir" .. Kashmir_(song) = 0.05
 - "Kashmir" … Kashmir_(region) = 0.91
 - **Captures the most likely entity behind the mention**

- **Context similarity** - \(\text{sim(ctx(mention), ctx(entity))} \)
 - Context of a mention: surrounding sentences
 - Context of an entity: the description of the entity
 - **Captures the entity that best fits the lexical context**

- **Coherence**
 - Entities that appear together tend to be related to one another
 - Usually solved by a greedy graph pruning algorithm
 - **Collectively captures the entities that make sense appearing together**
What breaks when going cross-lingual?

- Gathering candidate entities for a label
 - Only works reliably for proper names, and even that only when there’s no transliteration or the KB has the concept name in a local language
- Mention popularity
 - (same problem)
- Context similarity
 - Similarity operates in vector space, treating the distinct words as dimensions.
 - Across different languages the words don’t line up, so the similarity is almost meaningless!
Cross-lingual context similarity

Instead of just directly computing similarity, map the input document into the target language via a mapping, and compute similarity in that space.
How do we obtain the mapping?

- We train it via a parallel (or comparable) corp
 - Not statistical MT – just providing a linear mapping from one language space to another, which is an easier problem to solve
- CLIR technique: Canonical Correlation Analysis
- Our implementation: EuroParl
Potential issues

- If the mapping is weak because of low domain overlap, back off to direct similarity.
Future work

- Re-use language and semantic resources to improve performance on NLP tasks across different languages
 - FP7 - XLike

- Lower the barrier for using this technology for enriching content within a CMS
 - standardization work in the W3C Multilingual Web – LT WG
How to make this technology useful?

- Use these annotations within HTML
- Transparent to:
 - Normal CMS operation
 - Web browser rendering
- Readable to:
 - Localization workflow (terminology management - ITS)
 - Downstream NLP processing (OLiA, NIF)
 - Metadata crawlers (knowledge management)
 - Training of MT systems
Demo

- Example (RDFa Lite)
 - enrycher.ijs.si