Methodology and Campaign Design for the Evaluation of Semantic Search Tools

Stuart N. Wrigley¹, Dorothee Reinhard², Khadija Elbedweihiy¹, Abraham Bernstein², Fabio Ciravegna¹

¹University of Sheffield, UK
²University of Zurich, Switzerland
Outline

• SEALS initiative
• Evaluation design
 – Criteria
 – Two phase approach
 – API
 – Workflow
• Data
• Results and Analyses
• Conclusions
SEALS goals

• Develop and diffuse best practices in evaluation of semantic technologies
• Create a lasting reference infrastructure for semantic technology evaluation
 – This infrastructure will be the SEALS Platform
• Organise two worldwide Evaluation Campaigns
 – One this summer
 – Next in late 2011 / early 2012
• Facilitate the continuous evaluation of semantic technologies
• Allow easy access to both:
 – evaluation results (for developers and researchers)
 – technology roadmaps (for non-technical adopters)
• Transfer all infrastructure to the community
Targeted technologies

Five different types of semantic technologies:

• Ontology Engineering tools
• Ontology Storage and Reasoning Systems
• Ontology Matching tools
• Semantic Web Service tools
• **Semantic Search tools**
What’s our general approach?

• Low overhead to the participant
 – Automate as far as possible
 – We provide the compute
 – We initiate the actual evaluation run
 – We perform the analysis

• Provide infrastructure for more than simply running high profile evaluation campaigns
 – reuse existing evaluations for your personal testing
 – create new ones evaluations
 – store / publish / download test data sets

• Encourage participation in evaluation campaign definitions and design

• Open Source (Apache 2.0)
SEALS Platform

SEALS Service Manager

Evaluation Organisers

Technology Developers

Runtime Evaluation Service

Evaluation Repository Service
Test Data Repository Service
Tool Repository Service
Result Repository Service

Technology Users
SEARCH EVALUATION DESIGN
What do we want to do?

• Evaluate / benchmark semantic search tools
 – with respect to their semantic peers.

• Allow as wide a range of interface styles as possible

• Assess tools on basis of a number of criteria including usability

• Automate (part) of it
Evaluation criteria

User-centred search methodologies will be evaluated according to the following criteria:

• Query expressiveness
• Usability (effectiveness, efficiency, satisfaction)
• Scalability
• Quality of documentation
• Performance

- Is the style of interface suited to the type of query?
- How complex can the queries be?
- How easy is the tool to use?
- Ability to cope with a large ontology
- Ability to query a large repository in a reasonable time
- Ability to cope with a large amount of results
- Is it easy to understand?
- Is it well structured?

Resource consumption:
- execution time (speed)
- CPU load
- memory required
Two phase approach

• Semantic search tools evaluation demands a user-in-the-loop phase
 – usability criterion

• Two phases:
 – User-in-the-loop
 – Automated
Evaluation criteria

Each phase will address a different subset of criteria.

• **Automated evaluation**: query expressiveness, scalability, performance, quality of documentation

• **User-in-the-loop**: usability, query expressiveness
RUNNING THE EVALUATION
Automated evaluation

- Tools uploaded to platform. Includes:
 - wrapper implementing API
 - supporting libraries
- Test data and questions stored on platform
- Workflow specifies details of evaluation sequence
- Evaluation executed offline in batch mode
- Results stored on platform
- Analyses performed and stored on platform
User in the loop evaluation

- Performed at tool provider site
- All materials provided
 - Controller software
 - Instructions (leader and subjects)
 - Questionnaires
- Data downloaded from platform
- Results uploaded to platform

Tool provider machine

Search tool

Controller

API

SEALS Platform

Over the web
API

• A range of information needs to be acquired from the tool in both phases
• In automated phase, the tool has to be executed and interrogated with no human assistance.
• Interface between the SEALS platform and the tool must be formalised
API – common

• **Load ontology**
 – success / failure informs the interoperability

• **Determine result type**
 – ranked list or set?

• **Results ready?**
 – used to determine execution time

• **Get results**
 – list of URIs
 – number of results to be determined by developer
API – user in the loop

- User query input complete?
 - used to determine input time
- Get user query
 - String representation of user’s query
 - if NL interface, same as text inputted
- Get internal query
 - String representation of the internal query
 - for use with...
API – automated

• Execute query
 – mustn’t constrain tool type to particular format
 – tool provider given questions shortly before evaluation is executed
 – tool provider converts those questions into some form of ‘internal representation’ which can be serialised as a String
 – serialised internal representation passed to this method
DATA
Data set – user in the loop

• Mooney Natural Language Learning Data
 – used by previous semantic search evaluation
 – simple and well-known domain
 – using geography subset
 • 9 classes
 • 11 datatype properties
 • 17 object properties and
 • 697 instances
 – 877 questions already available
Data set – automated

• EvoOnt
 – set of object-oriented software source code ontologies
 – easy to create different ABox sizes given a TBox
 – 5 data set sizes: 1k, 10k, 100k, 1M, 10M triples
 – questions generated by software engineers
RESULTS AND ANALYSES
Questionnaires

3 questionnaires:

• SUS questionnaire

• Extended questionnaire
 – similar to SUS in terms of type of question but more detailed

• Demographics questionnaire
System Usability Scale (SUS) score

- SUS is a *Likert* scale
- 10-item questionnaire
- Each question has 5 levels (*strongly disagree* to *strongly agree*)
- SUS scores have a range of 0 to 100.
- A score of around **60** and above is generally considered as an indicator of good usability.
Demographics

- Age
- Gender
- Profession
- Number of years in education
- Highest qualification
- Number of years in employment
- Knowledge of informatics
- Knowledge of linguistics
- Knowledge of formal query languages
- Knowledge of English
- ...
Automated

Results
• Execution success (OK / FAIL / PLATFORM ERROR)
• Triples returned
• Time to execute each query
• CPU load, memory usage

Analyses
• Ability to load ontology and query (interoperability)
• Precision and Recall (search accuracy and query expressiveness)
• Tool robustness: ratio of all benchmarks executed to number of failed executions
User in the loop

Results (other than core results similar to automated phase)
- Query captured by the tool
- Underlying query (e.g., SPARQL)
- Is answer in result set? (user may try a number of queries before being successful)
- Time required to obtain answer
- Number of queries required to answer question

Analyses
- Precision and Recall
- Correlations between results and SUS scores, demographics, etc
Dissemination

• Results browsable on the SEALS portal
• Split into three areas:
 – performance
 – usability
 – comparison between tools
CONCLUSIONS
Conclusions

• Methodology and design of a semantic search tool evaluation campaign
• Exists within the wider context of the SEALS initiative
• First version
 • feedback from participants and community will drive the design of the second campaign
• Emphasis on the user experience (for search)
 – Two phase approach
THANK YOU
Get involved!

• First Evaluation Campaign in all SEALS technology areas this Summer
• Get involved – your input and participation is crucial
• Workshop planned for ISWC 2010 after campaign

• Find out more (and take part!) at: http://www.seals-project.eu
 or talk to me, or email me (s.wrigley@dcs.shef.ac.uk)
Timeline

• May 2010: Registration opens
• May-June 2010: Evaluation materials and documentation are provided to participants
• July 2010: Participants upload their tools
• August 2010: Evaluation scenarios are executed
• September 2010: Evaluation results are analysed
• November 2010: Evaluation results are discussed at ISWC 2010 workshop (tbc)
SEALS is proud to be sponsoring the best paper award here at SemSearch2010

Congratulations to the winning authors!