Learning Influence Probabilities in Social Networks

Amit Goyal1
Francesco Bonchi2
Laks V. S. Lakshmanan1

1 U. of British Columbia
2 Yahoo! Research
Word of Mouth and Viral Marketing

- We are more influenced by our friends than strangers
- 68% of consumers consult friends and family before purchasing home electronics (Burke 2003)
Viral Marketing

- Also known as Target Advertising
- Initiate chain reaction by Word of mouth effect
- Low investments, maximum gain
Viral Marketing as an Optimization Problem

- **Given:** Network with influence probabilities
- **Problem:** Select top-\(k\) users such that by targeting them, the spread of influence is maximized

- How to calculate true influence probabilities?
Some Questions

- Where do those influence probabilities come from?
 - Available real world datasets don’t have prob.!
- Can we learn those probabilities from available data?
- Previous Viral Marketing studies ignore the effect of time.
 - How can we take time into account?
 - Do probabilities change over time?
 - Can we predict time at which user is most likely to perform an action.
- What users/actions are more prone to influence?
Input Data

- We focus on actions.
- Input:
 - Social Graph: P and Q become friends at time 4.
 - Action log: User P performs actions a1 at time unit 5.

<table>
<thead>
<tr>
<th>User</th>
<th>Action</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>a1</td>
<td>5</td>
</tr>
<tr>
<td>Q</td>
<td>a1</td>
<td>10</td>
</tr>
<tr>
<td>R</td>
<td>a1</td>
<td>15</td>
</tr>
<tr>
<td>Q</td>
<td>a2</td>
<td>12</td>
</tr>
<tr>
<td>R</td>
<td>a2</td>
<td>14</td>
</tr>
<tr>
<td>R</td>
<td>a3</td>
<td>6</td>
</tr>
<tr>
<td>P</td>
<td>a3</td>
<td>14</td>
</tr>
</tbody>
</table>
Our contributions (1/2)

- Propose several probabilistic influence models between users.
 - Consistent with existing propagation models.

- Develop efficient algorithms to learn the parameters of the models.

- Able to predict whether a user perform an action or not.

- Predict the time at which she will perform it.
Our Contributions (2/2)

- Introduce metrics of users and actions influenceability.
 - High values => genuine influence.

- Validated our models on Flickr.
Overview

- **Input:**
 - **Social Graph:** P and Q become friends at time 4.
 - **Action log:** User P performs actions a1 at time unit 5.

<table>
<thead>
<tr>
<th>User</th>
<th>Action</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>a1</td>
<td>5</td>
</tr>
<tr>
<td>Q</td>
<td>a1</td>
<td>10</td>
</tr>
<tr>
<td>R</td>
<td>a1</td>
<td>15</td>
</tr>
<tr>
<td>Q</td>
<td>a2</td>
<td>12</td>
</tr>
<tr>
<td>R</td>
<td>a2</td>
<td>14</td>
</tr>
<tr>
<td>R</td>
<td>a3</td>
<td>6</td>
</tr>
<tr>
<td>P</td>
<td>a3</td>
<td>14</td>
</tr>
</tbody>
</table>

Influence Models

University of British Columbia, Yahoo! Research
http://people.cs.ubc.ca/~goyal
Background
General Threshold (Propagation) Model

- At any point of time, each node is either active or inactive.

- More active neighbors \Rightarrow u more likely to get active.

- Notations:
 - $S = \{\text{active neighbors of } u\}$.
 - $p_u(S)$: Joint influence probability of S on u.
 - Θ_u: Activation threshold of user u.

- When $p_u(S) \geq \Theta_u$, u becomes active.
General Threshold Model - Example

Stop!

Source: David Kempe’s slides
Our Framework
Solution Framework

- Assuming **independence**, we define

\[p_u(S) = 1 - \prod_{v \in S} (1 - p_{v,u}) \]

- \(p_{v,u} \): influence probability of user \(v \) on user \(u \)

- **Consistent** with the existing propagation models – monotonocity, submodularity.

- **Incremental**. i.e. \(p_u(S \cup \{w\}) \) can be updated incrementally using \(p_u(S) \) and \(p_{w,u} \)

- **Our aim is to learn** \(p_{v,u} \) for all edges.
Influence Models

- Static Models
 - Assume that influence probabilities are static and do not change over time.

- Continuous Time (CT) Models
 - Influence probabilities are continuous functions of time.
 - Not incremental, hence very expensive to apply on large datasets.

- Discrete Time (DT) Models
 - Approximation of CT models.
 - Incremental, hence efficient.
Static Models

- 4 variants
 - Bernoulli as running example.
- Incremental hence most efficient.
- We omit details here
Time Conscious Models

- Do influence probabilities remain constant independently of time?

- We propose **Continuous Time (CT) Model**
 - Based on exponential decay distribution

![Graph showing exponential decay distribution](image)
Continuous Time Models

- Best model.
- Capable of predicting time at which user is most likely to perform the action.
- Not incremental
 - Discrete Time Model
 - Based on step time functions
 - Incremental
Split the action log data into training (80%) and testing (20%).

- User “James” have joined “Whistler Mountain” community at time 5.

In testing phase, we ask the model to predict whether user will become active or not

- Given all the neighbors who are active
- Binary Classification
Evaluation Strategy (2/2)

- We ignore all the cases when none of the user’s friends is active
 - As then the model is inapplicable.

- We use ROC (Receiver Operating Characteristics) curves
 - True Positive Rate (TPR) vs False Positive Rate (FPR).
 - TPR = TP/P
 - FPR = FP/N

| Prediction | Reality | |
|------------|--------------------|
| | Active | Inactive |
| Active | TP | FP |
| Inactive | FN | TN |
| Total | P | N |

Operating Point

Ideal Point
Algorithms

- Special emphasis on efficiency of applying/testing the models.
 - Incremental Property

- In practice, action logs tend to be huge, so we optimize our algorithms to minimize the number of scans over the action log.
 - Training: 2 scans to learn all models simultaneously.
 - Testing: 1 scan to test one model at a time.
Experimental Evaluation
Yahoo! Flickr dataset

“Joining a group” is considered as action
- User “James” joined “Whistler Mountains” at time 5.

- #users ~ 1.3 million
- #edges ~ 40.4 million
- Degree: 61.31
- #groups/actions ~ 300K
- #tuples in action log ~ 35.8 million
Comparison of Static, CT and DT models

- Time conscious Models are better than Static Models.
- CT and DT models perform equally well.

http://people.cs.ubc.ca/~goyal
Static and DT models are far more efficient compared to CT models because of their incremental nature.
Predicting Time – Distribution of Error

- Operating Point is chosen corresponding to
 - TPR: 82.5%, FPR: 17.5%.

- X-axis: error in predicting time (in weeks)
- Y-axis: frequency of that error
- Most of the time, error in the prediction is very small
Predicting Time – Coverage vs Error

- Operating Point is chosen corresponding to:
 - TPR: 82.5%, FPR: 17.5%.

- A point (x,y) here means for $y\%$ of cases, the error is within $\pm x$.

- In particular, for 95% of the cases, the error is within 20 weeks.
User Influenceability

- Some users are more prone to influence propagation than others.
- Learn from Training data

- Users with high influenceability => easier prediction of influence => more prone to viral marketing campaigns.
Some actions are more prone to influence propagation than others.

Actions with high user influenceability => easier prediction of influence => more suitable to viral marketing campaigns.
Related Work

- Independently, Saito et al (KES 2008) have studied the same problem
 - Focus on Independent Cascade Model of propagation.
 - Apply Expectation Maximization (EM) algorithm.
 - Not scalable to huge datasets like the one we are dealing in this work.
Other applications of Influence Propagations

- Personalized Recommender Systems
 - Song et al 2006, 2007

- Feed Ranking
 - Samper et al 2006

- Trust Propagation
Conclusions (1/2)

- Previous works typically assume influence probabilities are given as input.

- Studied the problem of learning such probabilities from a log of past propagations.

- Proposed both static and time-conscious models of influence.

- We also proposed efficient algorithms to learn and apply the models.
Conclusions (2/2)

- Using CT models, it is possible to predict even the time at which a user will perform it with a good accuracy.

- Introduce metrics of users and actions influenceability.
 - High values => easier prediction of influence.
 - Can be utilized in Viral Marketing decisions.

University of British Columbia, Yahoo! Research
http://people.cs.ubc.ca/~goyal
Future Work

- Learning optimal user activation thresholds.
- Considering users and actions influenceability in the theory of Viral Marketing.
- Role of time in Viral Marketing.
Thanks!!
Predicting Time

- CT models can predict the time interval $[b,e]$ in which she is most likely to perform the action.

$\tau_{v,u} \ln(2)$ is half life period

Tightness of lower bounds not critical in Viral Marketing Applications.

Experiments on the upper bound e.

Θ_u

$0 \quad b = t_v \quad e = t_v + \tau_{v,u} \ln(2)$

Time ->
CT models can predict the time interval \([b,e]\) in which user is most likely to perform the action.

- Experiments only on upper bound \(e\).

Accuracy = \(\frac{\#\text{cases when the prediction of upper bound is correct}}{\#\text{total cases}}\)

RMSE = root mean square error

RMSE \(\sim\) 70-80 days
Static Models – Jaccard Index

- Jaccard Index is often used to measure similarity b/w sample sets.

- We adapt it to estimate $p_{v,u}$

\[
p_{v,u} = \frac{\text{# of actions propagated from } v \text{ to } u}{\text{# of actions performed by } v \text{ or } u}
\]
Partial Credits (PC)

- Let, for an action, D is influenced by 3 of its neighbors.
- Then, 1/3 credit is given to each one of these neighbors.

\[p_{v,u} = \frac{\text{total credits accumulated}}{\text{total number of actions } v \text{ performed}} \]

PC Bernoulli

\[p_{v,u} = \frac{\text{total credits accumulated}}{\text{total number of actions } v \text{ or } u \text{ performed}} \]

PC Jaccard

University of British Columbia, Yahoo! Research

http://people.cs.ubc.ca/~goyal
Learning the Models

Parameters to learn:
- \#actions performed by each user – A_u
- \#actions propagated via each edge – $A_{v,u}$
- Mean life time – $\tau_{v,u}$

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{u} & \text{A}_u \\
\hline
P & 0 \\
Q & 0 \\
R & 0 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{P} & \text{Q} & \text{R} \\
\hline
P & X & 0,0 & 10,10 \\
Q & 0,0 & X & 0,0 \\
R & 0,0 & 0,0 & X \\
\hline
\end{array}
\]

$A_{v,u}, \tau_{v,u}$
Propagation Models

- **Threshold Models**
 - Linear Threshold Model
 - General Threshold Model

- **Cascade Models**
 - Independent Cascade Model
 - Decreasing Cascade Model
Properties of Diffusion Models

- **Monotonocity**
 \[p_u(S) \leq p_u(T) \text{ whenever } S \subseteq T \]

- **Submodularity** – Law of marginal Gain
 \[p_u(S \cup \{w\}) - p_u(S) \geq p_u(T \cup \{w\}) - p_u(T) \]
 whenever \(S \subseteq T \)

- **Incrementality** (Optional)
 \(p_u(S \cup \{w\}) \) can be updated incrementally using \(p_u(S) \) and \(p_{wu} \)
Comparison of 4 variants

- Bernoulli is slightly better than Jaccard
- Among two Bernoulli variants, Partial Credits (PC) wins by a small margin.

ROC comparison of 4 variants of Static Models

ROC comparison of 4 variants of Discrete Time (DT) Models
Discrete Time Models

- Approximation of CT Models
- Incremental, hence efficient
- 4-variants corresponding to 4 Static Models
Overview

- Context and Motivation
- Background
- Our Framework
- Algorithms
- Experiments
- Related Work
- Conclusions
Continuous Time Models

- Joint influence probability
 \[p_u^t(S) = 1 - \prod_{v \in S} (1 - p_{v,u}^t) \]

- Individual probabilities – exponential decay
 \[p_{v,u}^t = p_{v,u}^0 e^{-\frac{(t-t_u)}{\tau_{v,u}}} \]
 - \(p_{v,u}^0 \): maximum influence probability of \(v \) on \(u \)
 - \(\tau_{v,u} \): the mean life time.
Algorithms

- **Training** – All models simultaneously in no more than 2 scans of training sub-set (80% of total) of action log table.

- **Testing** – One model requires only one scan of testing sub-set (20% of total) of action log table.

- Due to the lack of time, we omit the details of the algorithms.