Future dark energy probes and their robustness to systematics

Marisa Cristina March
with
R. Trotta, L. Amendola and D. Huterer

image credit: Albrecht et al. 2006

m.march@sussex.ac.uk
arXiv:1101.1521
Statistical Figure of Merit (FoM)

- A FoM gives a prediction of how good the constraints on the parameters of interest will be from a future probe.

- The statistical FoM is based on the inverse area of the joint error ellipses (black dashed) from existing (red) and new (blue) probes.

- The statistical FoM depends only on the orientation of the existing and future probes, but it does not depend on their degree of overlap.

- Green arrow indicates possible direction of systematic bias of future probe.

arXiv:1101.1521
m.march@sussex.ac.uk
Robustness Figure of Merit

- The Robustness FoM, R is a Bayesian way to quantify the degree of consistency between the two probes.
- Probes with a greater degree of overlap are more consistent, i.e. more robust to systematic bias.
- The average Robustness FoM, $\langle R \rangle$ is the Robustness averaged along the length of the bias vector.
- Upper plot shows existing probe (red) and future probe (blue) and a choice of three different bias vectors.
- Lower plot shows variation of Statistical FoM (S) and $\langle R \rangle$ as a function of the rotation angle between the two probes.
Test application of future probes

- Plots show construction of Robustness FoM for two types of dark energy probe, supernovae Ia (SN, upper plot) and Baryon Acoustic Oscillations (BAO, lower plot).
- Green arrows show a particular choice of possible systematic bias direction and size.
- For this particular choice of bias, SN are slightly more robust than BAO. This is mainly due to alignment of bias and degeneracy directions.

SUMMARY

- Statistical FoM quantifies orientation of probes.
- Robustness FoM gives measure of degree of compatibility (overlap) of probes, i.e. robustness to systematic errors.