Theories of everything

David W. Hogg
(Center for Cosmology and Particle Physics, New York University)

2012 December 16
what I am going to say

- Uniquely in astronomy, it is conceivable to have a justified probabilistic model of every observable source that explains every observed pixel of every image ever taken.

- We are working towards a few-10^9 parameter model of the 10^{13} pixels of large survey data we have in hand.

- **We would like to have a hierarchical model with a structure that mirrors the causal structure implicit in the cosmological model.**

- Collaborators:
 - Jo Bovy (IAS)
 - Rob Fergus (NYU)
 - Dan Foreman-Mackey (NYU)
 - Dustin Lang (Princeton)
 - Phil Marshall (Oxford)
 - Sam Roweis (deceased)
 - NASA, NSF (AST and IIS), Humboldt Foundation
astronomy: scale

- in 2011: total imaging data 10^{13} to 10^{14} few-byte pixels
 - only hundreds of terabytes
 - I spin it in my own machine room
- 10^9 to 10^{10} useful stars in the Milky Way
- 10^{10} useful galaxies in the observable Universe
- by 2020: 10^{16} pixels if we are lucky
 - note “optical” and “imaging” biases
astronomy is a sweet inference problem
astronomy: promise

- the Universe is driven by unseen constituents
 - dark matter
 - dark energy
- precise theory of gravity, the cosmological world model, and the growth of structure
- excellent physical models of stars
- working models for galaxies
- at the lowest level, the model is exceedingly sparse
 - each star touches only 10^{-11} of the full pixel database
 - each pixel touches only ~ 1 star or galaxy
- CCDs, IR arrays, receivers all well-understood in sensitivity and noise properties
Image modeling (Lang): data
Image modeling (Lang): model
what is a model?

- probability of the data given assumptions and parameters (a likelihood)
- priors over parameters
- priors over qualitative choices
- produces only probabilistic information
- inherently hierarchical
astronomers love catalogs

- list of stars and galaxies in the imaging you have
- SDSS Catalog has nearly 10^9 sources
- objects detected using statistical significance tests
- object properties measured using “algorithms”
- no probabilistic interpretation
 - the likelihood function doesn’t permit freedom in “algorithm choice”
 - no sampling over parameters
 - no sampling over qualitatively different explanations
blind deconvolution

► have an image b (unwrapped into one huge vector)
► model is

$$b = A \cdot x + e$$

where A is a convolution matrix, x is an unconvolved (true) scene, e is noise

► x has as many elements as b and A has far, far more (in general).
► regulation, restriction, or priors are required
► the likelihood function is just the noise model $p(e)$
► This is a standard idea underlying computer vision (see, e.g., Hirsch, Schölkopf).
Image modeling (Lang): tuning
Faint-source proper motions (0808.4004): brown dwarf
Faint-source proper motions (0808.4004): $z \sim 6$ quasar
Faint-source proper motions (0808.4004): faint galaxy
Faint-source proper motions (0808.4004): defect
“okay, you can model the stars, but that’s the easy part!”

- stars are laid down by a process set by the Milky Way
- the Milky Way is created by a process set by the cosmological model
Fig. 1.— Smoothed, summed weight image of the SDSS field after subtraction of a low-order polynomial surface fit. Darker areas indicate higher surface densities. The weight image has been smoothed with a Gaussian kernel with $\sigma = 0.2^\circ$. The white areas are either missing data, or clusters, or bright stars which have been masked out prior to analysis.

Stream-finding

going up the hierarchy

- stars are on orbits around the Milky Way
- the Milky Way is generated by gravitational collapse from initial conditions (and a whole lot of gastrophysics)
- the initial conditions and growth of structure are set by the cosmological parameters
- the cosmological parameters are set by...
- we don’t know how to perform this inference, even approximately!
 - models of no fixed complexity
 - likelihood “calls” involve enormous dynamical computations
 - numbers of parameters in the billions
 - butterfly effects abound
and we’re back:

Key: Telescope / Atmosphere / Detector / Star / Galaxy
baryon acoustic feature
two-point functions

- much of cosmology depends on two-point functions
 - correlation functions
 - power spectra
 - variances as a function of scale
- two point functions are invariably point-estimated
 - count pairs as a function of separation
 - evaluate harmonic basis functions at galaxies
 - FFT a pixel map
 - insane “window functions”
- principled inference happens after that lossy point estimation
- can we do better?
 - Gaussian processes?
 - infer the density field?
exoplanet direct imaging (Fergus, in prep)
what I said

- Uniquely in astronomy, it is conceivable to have a justified probabilistic model of every observable source that explains every observed pixel of every image ever taken.
- We are working towards a few-10^9 parameter model of the 10^{13} pixels of large survey data we have in hand.
- **We would like to have a hierarchical model with a structure that mirrors the causal structure implicit in the cosmological model.**
- Collaborators:
 - Jo Bovy (IAS)
 - Rob Fergus (NYU)
 - Dan Foreman-Mackey (NYU)
 - Dustin Lang (Princeton)
 - Phil Marshall (Oxford)
 - Sam Roweis (deceased)
 - NASA, NSF (AST and IIS), Humboldt Foundation