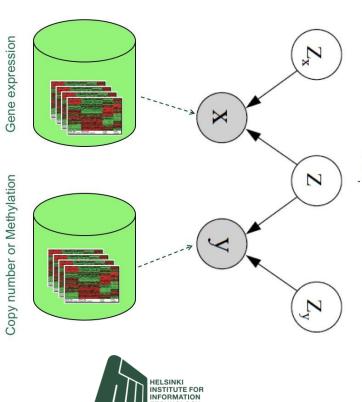


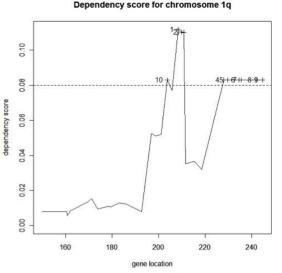
Multi-source Survival analysis

Ali Faisal NIPS PM - 16th Dec.'11

Motivation

- How can we increase the reliability of putative driver genes involved in tumor progression and drug resistance?
- Combination of many different molecular mechanisms disrupt cellular pathways and characterize a cancer
- Modeling these requires genome scale multi-source approaches (which is one of the main contributions of this work)
- Specifically our aim is to identify potential regions (or biomarkers) that effectively stratify patients in low and high survival groups.




Multi-source survival analysis

Identify chromosomal regions that have high dependencies among gene-expression, methylation and copy number changes,

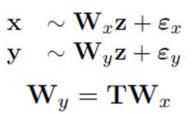
Then form patients groups from the regions

Finally check weather the identified genomic aberrations have survival association.

Dependency score for chromosome 1q

gene location

220


240

0.05

0.00

160

dependency score

Results: Survival Associated Regions (qvals < 0.05)

											Enrichment Test (qvals)						
														Clinical factors			
	Jaiset used		Biomarker		Genes in the region									White	Fernale	Male	pee ⁷ 60
	٥		10p13	MCM10	SEC61A2	OPTN	CDC123	OLAH	RPP38	PRPF18	PTER	CAMK1D	HSPA14	1	0.18644	1	1
	- exp		10q22.1	UNC5B	CHST3	SUPV3L1	HKDC1	HK1	DDX21	SGPL1	COL13A1	SLC29A3	KIAA12 7 9	0.2544	0.37807	1	9E-05
	gh .		10q22.1	HNRNPH3	UNC5B	SUPV3L1	HKDC1	HK1	DDX21	SGPL1	COL13A1	SLC29A3	KIAA1279	1	1	1	1
KM	0		10q26.13	SEC23IP	PLEKH A1	BCCIP	WDR11	PTPRE	TACC2	BUB3	FAM175B	ACADSB	INPP5F	1	1	1	0.8119
	mehty-exp		21q22.2	DOPEY2	ETS2	CBR1	MORC3	SLC37A1	PKNOX1	CRYAA	ПСЗ	MX2	SH3BGR	1	1	1	1
Cox	cgh-methy	& exp	9p24.3	SMARCA2	DNAJA1	TYRP1	SH3GL2	TEK	IFNA8	SNAPC3	NUDT2	KCNV2	PDCD1LG2	1	1	0.37807	1

Code available at: http://research.ics.tkk.fi/mi/software/daSAr/

