Learning with Submodular Functions: A Convex Optimization Perspective

Francis Bach
Sierra project-team, INRIA - Ecole Normale Supérieure

Thanks to R. Jenatton, J. Mairal, G. Obozinski
December 2011
Convex optimization with combinatorial structure

• Supervised learning
 – Minimize regularized empirical risk from data \((x_i, y_i), i = 1, \ldots, n:\)
 \[
 \min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)) + \lambda \Omega(f)
 \]
 – \(\mathcal{F}\) is often a vector space, formulation often convex

• Introducing discrete structures within a vector space framework
 – Trees, graphs, etc.
 – Many different approaches (e.g., stochastic processes)

• Submodularity allows the incorporation of discrete structures
Outline

• **Submodular functions**
 – Links with convexity through Lovász extension
 – Optimization on submodular polyhedra

• **Structured sparsity-inducing norms**
 – Relaxation of the penalization of supports
 – Examples
 – Unified algorithms and analysis

• **Approximate submodular function minimization**
Outline

- **Submodular functions**
 - Links with convexity through Lovász extension
 - Optimization on submodular polyhedra

- **Structured sparsity-inducing norms**
 - Relaxation of the penalization of supports
 - Examples
 - Unified algorithms and analysis

- **Approximate submodular function minimization**

- (for more details, see tutorial / technical report on web page)
Submodular functions

• $F : 2^V \rightarrow \mathbb{R}$ is submodular if and only if

\[
\forall A, B \subset V, \quad F(A) + F(B) \geq F(A \cap B) + F(A \cup B)
\]

\[
\iff \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing}
\]
Submodular functions

- $F : 2^V \to \mathbb{R}$ is **submodular** if and only if

 $\forall A, B \subset V, \quad F(A) + F(B) \geq F(A \cap B) + F(A \cup B)$

 $\iff \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A)$ is non-increasing

- **Intuition 1**: defined like concave functions ("diminishing returns")
 - Example: $F : A \mapsto g(\text{Card}(A))$ is submodular if g is concave
Submodular functions

- \(F : 2^V \to \mathbb{R} \) is submodular if and only if

\[
\forall A, B \subset V, \quad F(A) + F(B) \geq F(A \cap B) + F(A \cup B)
\]
\[
\iff \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing}
\]

- **Intuition 1**: defined like concave functions (“diminishing returns”)
 - Example: \(F : A \mapsto g(\text{Card}(A)) \) is submodular if \(g \) is concave

- **Intuition 2**: behave like convex functions
 - Polynomial-time minimization, conjugacy theory
Submodular functions

- $F : 2^V \to \mathbb{R}$ is **submodular** if and only if

\[
\forall A, B \subset V, \quad F(A) + F(B) \geq F(A \cap B) + F(A \cup B)
\]

\[\iff \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing}\]

- **Intuition 1**: defined like concave functions ("diminishing returns")
 - Example: $F : A \mapsto g(\text{Card}(A))$ is submodular if g is concave

- **Intuition 2**: behave like convex functions
 - Polynomial-time minimization, conjugacy theory

- Used in several areas of signal processing and machine learning
 - Total variation/graph cuts (Chambolle, 2005; Boykov et al., 2001)
 - Optimal design (Krause and Guestrin, 2005)
Submodular functions - Examples

- Concave functions of the cardinality: $g(|A|)$

- Cuts

- Entropies
 - $H((X_k)_{k \in A})$ from p random variables X_1, \ldots, X_p
 - Gaussian variables $H((X_k)_{k \in A}) \propto \log \det \Sigma_{AA}$
 - Functions of eigenvalues of sub-matrices

- Network flows
 - Efficient representation for set covers

- Rank functions of matroids
Submodular functions - Lovász extension

- Subsets may be identified with elements of \(\{0, 1\}^p \)

- Given any set-function \(F \) and \(w \) such that \(w_{j_1} \geq \cdots \geq w_{j_p} \), define:

\[
f(w) = \sum_{k=1}^p w_{j_k} [F(\{j_1, \ldots, j_k\}) - F(\{j_1, \ldots, j_{k-1}\})]
\]

- If \(w = 1_A \), \(f(w) = F(A) \) \(\Rightarrow \) extension from \(\{0, 1\}^p \) to \(\mathbb{R}^p \)
- \(f \) is piecewise affine and positively homogeneous

- \(F \) is submodular if and only if \(f \) is convex (Lovász, 1982)
 - Minimizing \(f(w) \) on \(w \in [0, 1]^p \) equivalent to minimizing \(F \) on \(2^V \)
Submodular functions - Submodular polyhedra

- Submodular polyhedron: \(P(F) = \{ s \in \mathbb{R}^p, \forall A \subset V, s(A) \leq F(A) \} \)

- Base polyhedron: \(B(F) = P(F) \cap \{ s(V) = F(V) \} \)
Submodular functions - Submodular polyhedra

- Submodular polyhedron: \(P(F) = \{ s \in \mathbb{R}^p, \forall A \subset V, s(A) \leq F(A) \} \)

- Base polyhedron: \(B(F) = P(F') \cap \{ s(V) = F(V) \} \)

- **Link with Lovász extension** (Edmonds, 1970; Lovász, 1982):
 - if \(w \in \mathbb{R}^p_+ \), then \(\max_{s \in P(F')} w^\top s = f(w) \)
 - if \(w \in \mathbb{R}^p \), then \(\max_{s \in B(F)} w^\top s = f(w) \)

- Maximizer obtained by greedy algorithm:
 - Sort the components of \(w \), as \(w_{j_1} \geq \cdots \geq w_{j_p} \)
 - Set \(s_{j_k} = F(\{j_1, \ldots, j_k\}) - F(\{j_1, \ldots, j_{k-1}\}) \)

- Other operations on submodular polyhedra (see, e.g., Bach, 2011)
Submodular functions - Optimization

- Submodular function minimization in $O(p^6)$
 - Schrijver (2000); Iwata et al. (2001); Orlin (2009)

- Efficient active set algorithm with no complexity bound
 - Based on the efficient computability of the support function
 - Fujishige and Isotani (2011); Wolfe (1976)

- Special cases with faster algorithms: cuts, flows

- Active area of research
 - Stobbe and Krause (2010)
 - Jegelka, Lin, and Bilmes (2011)
Separable optimization on base polyhedron

- Assume each ψ_k is a strictly convex function $\mathbb{R} \rightarrow \mathbb{R}$

- **Proposition**: the two following problems are dual to each other

\[
\min_{w \in \mathbb{R}^p} \sum_{k \in V} \psi_k(w_k) + f(w) \\
\max_{s \in B(F)} \sum_{k \in V} -\psi_k(-s_k)
\]
Separable optimization on base polyhedron

• Assume each ψ_k is a strictly convex function $\mathbb{R} \rightarrow \mathbb{R}$

• Proposition: the two following problems are dual to each other

$$\min_{w \in \mathbb{R}^p} \sum_{k \in V} \psi_k(w_k) + f(w)$$

$$\max_{s \in B(F)} \sum_{k \in V} -\psi_k(-s_k)$$

• Proposition (Chambolle and Darbon, 2009): let w^* be the solution of $\min_{w \in \mathbb{R}^p} \sum_{k \in V} \psi_k(w_k) + f(w)$. Then, for $\alpha \in \mathbb{R}$,

$$\min_{A \subset V} F(A) + \sum_{j \in A} \psi'_k(\alpha)$$

has minimal minimizer $\{w^* > \alpha\}$ and maximal minimizer $\{w^* \geq \alpha\}$
From convex to combinatorial optimization

- Solving $\min_{w \in \mathbb{R}^p} \sum_{k \in V} \psi_k(w_k) + f(w)$ to solve $\min_{A \subseteq V} F(A)$
 - Thresholding solutions w at zero if $\forall k \in V, \psi'_k(0) = 0$
 - For quadratic functions $\psi_k(w_k) = \frac{1}{2}w_k^2$, equivalent to projecting 0 on $B(F)$ (Fujishige, 2005)
 - minimum-norm-point algorithm (Fujishige and Isotani, 2011)
From convex to combinatorial optimization and vice-versa...

- Solving $\min_{w \in \mathbb{R}^p} \sum_{k \in V} \psi_k(w_k) + f(w)$ to solve $\min_{A \subseteq V} F(A)$
 - Thresholding solutions w at zero if $\forall k \in V, \psi'_k(0) = 0$
 - For quadratic functions $\psi_k(w_k) = \frac{1}{2}w_k^2$, equivalent to projecting 0 on $B(F)$ (Fujishige, 2005)
 - minimum-norm-point algorithm (Fujishige and Isotani, 2011)

- Solving $\min_{A \subseteq V} F(A) - t(A)$ to solve $\min_{w \in \mathbb{R}^p} \sum_{k \in V} \psi_k(w_k) + f(w)$
 - General decomposition strategy (Groenevelt, 1991)
 - Efficient only when submodular minimization is efficient
Outline

• Submodular functions
 – Links with convexity through Lovász extension
 – Optimization on submodular polyhedra

• Structured sparsity-inducing norms
 – Relaxation of the penalization of supports
 – Examples
 – Unified algorithms and analysis

• Approximate submodular function minimization
Sparsity in supervised machine learning

- Observed data \((x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}, i = 1, \ldots, n\)
 - Response vector \(y = (y_1, \ldots, y_n)^\top \in \mathbb{R}^n\)
 - Design matrix \(X = (x_1, \ldots, x_n)^\top \in \mathbb{R}^{n \times p}\)

- Regularized empirical risk minimization:
 \[
 \min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, w^\top x_i) + \lambda \Omega(w) = \min_{w \in \mathbb{R}^p} L(y, Xw) + \lambda \Omega(w)
 \]

- Norm \(\Omega\) to promote sparsity
 - square loss + \(\ell_1\)-norm \(\Rightarrow\) basis pursuit in signal processing (Chen et al., 2001), Lasso in statistics/machine learning (Tibshirani, 1996)
 - Proxy for interpretability
 - Allow high-dimensional inference: \(\log p = O(n)\)
Sparsity in unsupervised machine learning

- **Multiple responses/signals** $y = (y^1, \ldots, y^k) \in \mathbb{R}^{n \times k}$

- **Dictionary learning**

 - Learn $X = (x^1, \ldots, x^p) \in \mathbb{R}^{n \times p}$ such that $\forall j$, $\|x^j\|_2 \leq 1$

 \[
 \min_{X=(x^1, \ldots, x^p)} \min_{w^1, \ldots, w^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(y^j, Xw^j) + \lambda \Omega(w^j) \right\}
 \]

 - Olshausen and Field (1997); Elad and Aharon (2006)

- **sparse PCA**: replace $\|x^j\|_2 \leq 1$ by $\Theta(x^j) \leq 1$
Why structured sparsity?

● Interpretability
 – Structured dictionary elements (Jenatton et al., 2009b)
 – Dictionary elements “organized” in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)
Structured sparse PCA (Jenatton et al., 2009b)

- Unstructured sparse PCA \Rightarrow many zeros do not lead to better interpretability
Structured sparse PCA (Jenatton et al., 2009b)

- Unstructured sparse PCA \(\Rightarrow\) many zeros do not lead to better interpretability
Structured sparse PCA (Jenatton et al., 2009b)

- Enforce selection of convex nonzero patterns ⇒ robustness to occlusion in face identification
Structured sparse PCA (Jenatton et al., 2009b)

- Enforce selection of **convex** nonzero patterns \Rightarrow robustness to occlusion in face identification
Why structured sparsity?

- Interpretability
 - Structured dictionary elements (Jenatton et al., 2009b)
 - Dictionary elements “organized” in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)
Modelling of text corpora (Jenatton et al., 2010)
Why structured sparsity?

- **Interpretability**
 - Structured dictionary elements (Jenatton et al., 2009b)
 - Dictionary elements “organized” in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)
Why structured sparsity?

- **Interpretability**
 - Structured dictionary elements (Jenatton et al., 2009b)
 - Dictionary elements “organized” in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

- **Stability and identifiability**
 - Optimization problem $\min_{w \in \mathbb{R}^p} L(y, Xw) + \lambda \|w\|_1$ is unstable
 - “Codes” w^j often used in later processing (Mairal et al., 2009)

- **Prediction or estimation performance**
 - When prior knowledge matches data (Haupt and Nowak, 2006; Baraniuk et al., 2008; Jenatton et al., 2009a; Huang et al., 2009)

- **Numerical efficiency**
 - Non-linear variable selection with 2^p subsets (Bach, 2008)
ℓ_1-norm = convex envelope of cardinality of support

- Let $w \in \mathbb{R}^p$. Let $V = \{1, \ldots, p\}$ and $\text{Supp}(w) = \{j \in V, w_j \neq 0\}$
- **Cardinality of support**: $\|w\|_0 = \text{Card}(\text{Supp}(w))$
- Convex envelope = largest convex lower bound (see, e.g., Boyd and Vandenberghe, 2004)

ℓ_1-norm = convex envelope of ℓ_0-quasi-norm on the ℓ_∞-ball $[-1, 1]^p$
Convex envelopes of general functions of the support (Bach, 2010)

- Let $F : 2^V \to \mathbb{R}$ be a set-function
 - Assume F is non-decreasing (i.e., $A \subseteq B \Rightarrow F(A) \leq F(B)$)
 - Explicit prior knowledge on supports (Haupt and Nowak, 2006; Baraniuk et al., 2008; Huang et al., 2009)

- Define $\Theta(w) = F(Supp(w))$: How to get its convex envelope?
 1. Possible if F is also submodular
 2. Allows unified theory and algorithm
 3. Provides new regularizers
Submodular functions and structured sparsity

- Let $F : 2^V \rightarrow \mathbb{R}$ be a non-decreasing submodular set-function

- **Proposition**: the convex envelope of $\Theta : w \mapsto F(\text{Supp}(w))$ on the ℓ_∞-ball is $\Omega : w \mapsto f(|w|)$ where f is the Lovász extension of F
Submodular functions and structured sparsity

- Let $F : 2^V \rightarrow \mathbb{R}$ be a **non-decreasing submodular set-function**

- **Proposition:** the convex envelope of $\Theta : w \mapsto F(Supp(w))$ on the ℓ_∞-ball is $\Omega : w \mapsto f(|w|)$ where f is the Lovász extension of F

- **Sparsity-inducing properties:** Ω is a **polyhedral norm**

F at

- A if stable if for all $B \supset A$, $B \neq A \Rightarrow F(B) > F(A)$
- With probability one, stable sets are the only allowed patterns
Polyhedral unit balls

$F(A) = |A|$
$\Omega(w) = \|w\|_1$

$F(A) = \min\{|A|, 1\}$
$\Omega(w) = \|w\|_\infty$

$F(A) = |A|^{1/2}$
all possible extreme points

$F(A) = 1_{\{A \cap \{1\} \neq \emptyset\}} + 1_{\{A \cap \{2,3\} \neq \emptyset\}}$
$\Omega(w) = |w_1| + \|w_{\{2,3\}}\|_\infty$

$F(A) = 1_{\{A \cap \{1,2,3\} \neq \emptyset\}} + 1_{\{A \cap \{2,3\} \neq \emptyset\}} + 1_{\{A \cap \{3\} \neq \emptyset\}}$
$\Omega(w) = \|w\|_\infty + \|w_{\{2,3\}}\|_\infty + |w_3|$
Submodular functions and structured sparsity

Examples

- From $\Omega(w)$ to $F(A)$: provides new insights into existing norms
 - Grouped norms with overlapping groups (Jenatton et al., 2009a)
 \[
 \Omega(w) = \sum_{G \in G} \|w_G\|_{\infty}
 \]
 - $\ell_1-\ell_\infty$ norm \Rightarrow sparsity at the group level
 - Some w_G's are set to zero for some groups G
 \[
 (\text{Supp}(w))^c = \bigcup_{G \in \mathcal{H}} G \text{ for some } \mathcal{H} \subseteq G
 \]
Submodular functions and structured sparsity

Examples

- From $\Omega(w)$ to $F(A)$: provides new insights into existing norms
 - Grouped norms with overlapping groups (Jenatton et al., 2009a)
 $$\Omega(w) = \sum_{G \in \mathcal{G}} \|w_G\|_\infty \implies F(A) = \text{Card}\left(\{G \in \mathcal{G}, G \cap A \neq \emptyset\}\right)$$
 - $\ell_1-\ell_\infty$ norm \Rightarrow sparsity at the group level
 - Some w_G's are set to zero for some groups G
 $$(\text{Supp}(w))^c = \bigcup_{G \in \mathcal{H}} G \text{ for some } \mathcal{H} \subseteq \mathcal{G}$$
 - Justification not only limited to allowed sparsity patterns
Selection of contiguous patterns in a sequence

- Selection of contiguous patterns in a sequence

- \mathcal{G} is the set of blue groups: any union of blue groups set to zero leads to the selection of a contiguous pattern
Selection of contiguous patterns in a sequence

- Selection of contiguous patterns in a sequence

- \mathcal{G} is the set of blue groups: any union of blue groups set to zero leads to the selection of a contiguous pattern

- $\sum_{G \in \mathcal{G}} \|w_G\|_\infty \Rightarrow F(A) = p - 2 + \text{Range}(A)$ if $A \neq \emptyset$
Extensions of norms with overlapping groups

• Selection of rectangles (at any position) in a 2-D grids

• Hierarchies
Submodular functions and structured sparsity

Examples

- **From** $\Omega(w)$ **to** $F(A)$: provides new insights into existing norms
 - Grouped norms with **overlapping** groups (Jenatton et al., 2009a)

 $\Omega(w) = \sum_{G \in \mathcal{G}} \|w_G\|_{\infty} \Rightarrow F(A) = \text{Card}(\{G \in \mathcal{G}, G \cap A \neq \emptyset\})$

 - Justification not only limited to allowed sparsity patterns
Submodular functions and structured sparsity

Examples

- **From $\Omega(w)$ to $F(A)$**: provides new insights into existing norms
 - Grouped norms with overlapping groups (Jenatton et al., 2009a)
 \[
 \Omega(w) = \sum_{G \in \mathcal{G}} \|w_G\|_\infty \quad \Rightarrow \quad F(A) = \text{Card}(\{G \in \mathcal{G}, G \cap A \neq \emptyset\})
 \]
 - Justification not only limited to allowed sparsity patterns

- **From $F(A)$ to $\Omega(w)$**: provides new sparsity-inducing norms
 - $F(A) = g(\text{Card}(A)) \quad \Rightarrow \quad \Omega$ is a combination of order statistics
 - Non-factorial priors for supervised learning: Ω depends on the eigenvalues of $X_A^\top X_A$ and not simply on the cardinality of A
Unified optimization algorithms

- **Polyhedral norm** with exponentially many faces and extreme points
 - Not suitable for linear programming toolboxes

- **Subgradient** ($w \mapsto \Omega(w)$ non-differentiable)
 - Subgradient may be obtained in polynomial time \Rightarrow too slow
Unified optimization algorithms

- **Polyhedral norm** with exponentially many faces and extreme points
 - Not suitable for linear programming toolboxes

- **Subgradient** \((w \mapsto \Omega(w))\) non-differentiable
 - Subgradient may be obtained in polynomial time \(\Rightarrow\) too slow

- **Proximal methods** (see, e.g., Beck and Teboulle, 2009; Bach, Jenatton, Mairal, and Obozinski, 2011)
 - \(\min_{w \in \mathbb{R}^p} L(y, Xw) + \lambda \Omega(w)\): differentiable + non-differentiable
 - Efficient when \((P):\ min_{w \in \mathbb{R}^p} \frac{1}{2}\|w - v\|_2^2 + \lambda \Omega(w)\) is “easy”

- **The proximal problem** \((P)\) is equivalent to a sequence of submodular function minimizations
 - Decomposition strategy (Groenevelt, 1991) or min-norm-point
Comparison of optimization algorithms

- Synthetic example with $p = 1000$ and $F(A) = |A|^{1/2}$

- ISTA: proximal method

- FISTA: accelerated variant (Beck and Teboulle, 2009)
Extensions

• **Unified statistical analysis** (Bach, 2010)
 – support recovery and estimation consistency

• **Extension to symmetric submodular functions**
 – Shaping level sets (Bach, 2011)

• **Avoiding artefacts linked with ℓ_∞-norms**
 – See poster at this workshop (Obozinski and Bach, 2011)

• **Generalization to other set-functions**
 – See same poster at this workshop (Obozinski and Bach, 2011)
Polyhedral unit balls

\[F(A) = |A| \]
\[\Omega(w) = \|w\|_1 \]

\[F(A) = \min\{ |A|, 1 \} \]
\[\Omega(w) = \|w\|_\infty \]

\[F(A) = |A|^{1/2} \]
all possible extreme points

\[F(A) = 1 \{ A \cap \{1\} \neq \emptyset \} + 1 \{ A \cap \{2,3\} \neq \emptyset \} \]
\[\Omega(w) = |w_1| + \|w_{\{2,3\}}\|_\infty \]

\[F(A) = 1 \{ A \cap \{1,2,3\} \neq \emptyset \} \]
\[+ 1 \{ A \cap \{2,3\} \neq \emptyset \} + 1 \{ A \cap \{3\} \neq \emptyset \} \]
\[\Omega(w) = \|w\|_\infty + \|w_{\{2,3\}}\|_\infty + |w_3| \]
Outline

• **Submodular functions**
 – Links with convexity through Lovász extension
 – Optimization on submodular polyhedra

• **Structured sparsity-inducing norms**
 – Relaxation of the penalization of supports
 – Examples
 – Unified algorithms and analysis

• **Approximate submodular function minimization**
Approximate submodular function minimization

- For most machine learning applications, no need to obtain exact minimum
Approximate submodular function minimization

• For most machine learning applications, no need to obtain exact minimum

• Assume (wlog.) that $\forall k \in V, F(\{k\}) \geq 0$ and $F(V \backslash \{k\}) \geq F(V)$

• Denote $D^2 = \sum_{k \in V} \{ F(\{k\}) + F(V \backslash \{k\}) - F(V) \}$

• Proposition: t iterations of subgradient descent outputs a set A_t (and a certificate of optimality s_t) such that

$$F(A_t) - \min_{B \subset V} F(B) \leq F(A_t) - (s_t)_-(V) \leq \frac{Dp^{1/2}}{\sqrt{t}}$$
Approximate quadratic optimization on $B(F)$

- **Goal:**
 \[
 \min_{w \in \mathbb{R}^p} \frac{1}{2} \|w\|_2^2 + f(w) = \max_{s \in B(F)} -\frac{1}{2} \|s\|_2^2
 \]

- Can only maximize linear functions on $B(F)$

- **Two types of “Frank-wolfe” algorithms**

- **1. Active set algorithm (\leftrightarrow min-norm-point)**
 - Sequence of maximizations of linear functions over $B(F)$
 + overheads (affine projections)
 - Finite convergence, but no complexity bounds
Approximate quadratic optimization on $B(F)$

- **Goal:** \(\min_{w \in \mathbb{R}^p} \frac{1}{2} \| w \|_2^2 + f(w) = \max_{s \in B(F)} -\frac{1}{2} \| s \|_2^2 \)

- Can only maximize linear functions on $B(F)$

- **Two types of “Frank-wolfe” algorithms**

 1. **Active set algorithm** (\(\Leftrightarrow \) min-norm-point)
 - Sequence of maximizations of linear functions over $B(F)$
 - + overheads (affine projections)
 - Finite convergence, but no complexity bounds

 2. **Conditional gradient**
 - Sequence of maximizations of linear functions over $B(F)$
 - Approximate optimality bound
Conditional gradient with line search

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)
Approximate quadratic optimization on $B(F)$

- **Proposition:** t steps of conditional gradient (with line search) outputs $s_t \in B(F)$ and $w_t = -s_t$, such that

\[
\begin{align*}
f(w_t) + \frac{1}{2}\|w_t\|_2^2 - \text{OPT} &\leq f(w_t) + \frac{1}{2}\|w_t\|_2^2 + \frac{1}{2}\|s_t\|_2^2 \leq \frac{2D^2}{t}
\end{align*}
\]
Approximate quadratic optimization on $B(F)$

- **Proposition:** t steps of conditional gradient (with line search) outputs $s_t \in B(F)$ and $w_t = -s_t$, such that

$$f(w_t) + \frac{1}{2} \|w_t\|^2_2 - \text{OPT} \leq f(w_t) + \frac{1}{2} \|w_t\|^2_2 + \frac{1}{2} \|s_t\|^2_2 \leq \frac{2D^2}{t}$$

- **Improved primal candidate through isotonic regression**
 - $f(w)$ is linear on any set of w with fixed ordering
 - May be optimized using isotonic regression (“pool-adjacent-violator”) in $O(n)$ (see, e.g. Best and Chakravarti, 1990)
 - Given $w_t = -s_t$, keep the ordering and reoptimize
Approximate quadratic optimization on $B(F)$

- **Proposition**: t steps of conditional gradient (with line search) outputs $s_t \in B(F)$ and $w_t = -s_t$, such that

$$f(w_t) + \frac{1}{2} \|w_t\|_2^2 - \text{OPT} \leq f(w_t) + \frac{1}{2} \|w_t\|_2^2 + \frac{1}{2} \|s_t\|_2^2 \leq \frac{2D^2}{t}$$

- **Improved primal candidate through isotonic regression**
 - $f(w)$ is linear on any set of w with fixed ordering
 - May be optimized using isotonic regression ("pool-adjacent-violator") in $O(n)$ (see, e.g. Best and Chakravarti, 1990)
 - Given $w_t = -s_t$, keep the ordering and reoptimize

- **Better bound for submodular function minimization?**
From quadratic optimization on $B(F)$ to submodular function minimization

- **Proposition:** If w is ε-optimal for $\min_{w \in \mathbb{R}^p} \frac{1}{2} \|w\|_2^2 + f(w)$, then at least a level set A of w is $(\frac{\sqrt{\varepsilon p}}{2})$-optimal for submodular function minimization.

- If $\varepsilon = \frac{2D^2}{t}$, $\sqrt{\varepsilon p} = \frac{Dp^{1/2}}{\sqrt{2t}}$ \Rightarrow **no provable gains**, but:
 - Bound on the iterates A_t (with additional assumptions)
 - Possible thresholding for acceleration
From quadratic optimization on $B(F)$ to submodular function minimization

- **Proposition**: If w is ε-optimal for $\min_{w \in \mathbb{R}^p} \frac{1}{2} \|w\|_2^2 + f(w)$, then at least a level set A of w is $(\frac{\sqrt{\varepsilon p}}{2})$-optimal for submodular function minimization.

- If $\varepsilon = \frac{2D^2}{t}$, $\frac{\sqrt{\varepsilon p}}{2} = \frac{Dp^{1/2}}{\sqrt{2t}} \Rightarrow$ **no provable gains**, but:
 - Bound on the iterates A_t (with additional assumptions)
 - Possible thresholding for acceleration

- **Lower complexity bound for SFM**
 - **Proposition**: no algorithm that is based only on a sequence of greedy algorithms obtained from linear combinations of bases can improve on the subgradient bound (after $p/2$ iterations).
Simulations on standard benchmark “DIMACS Genrmf-wide”, p = 575

- Submodular function minimization
 - (Left) optimal value minus dual function values \((s_t) - (V)\)
 (in dashed, certified duality gap)
 - (Right) Primal function values \(F(A_t)\) minus optimal value

![Graphs showing the relationship between the number of iterations and the function values](image)

\[
\log_{10}(\min(f) - s_t(V))
\]

\[
\log_{10}(F(A) - \min(F))
\]
Simulations on standard benchmark

- **Separable quadratic optimization**
 - (Left) optimal value minus dual function values $-\frac{1}{2}\|s_t\|^2$ (in dashed, certified duality gap)
 - (Right) Primal function values $f(w_t) + \frac{1}{2}\|w_t\|^2$ minus optimal value (in dashed, before the pool-adjacent-violator correction)
Conclusion

• Submodular functions to encode discrete structures
 – Structured sparsity-inducing norms

• Convex optimization for submodular function optimization
 – Approximate optimization using classical iterative algorithms

• Future work
 – Primal-dual optimization
 – Going beyond linear programming
References

