Learning on graphs/trees domains: hyperlinked webpages, social networks, co-author networks, biological networks, ...

Our learning problem: node classification of weighted, connected and undirected trees (and graphs) based only on graph topology

We focus on binary labeling

Bias: strongly connected nodes \rightarrow same label

$+$ $- = \text{cut edge}$

weight of cut-edges is small
Learning protocol

The Shazoo algorithm

On-line learning protocol: Vertices are issued one by one in an arbitrary order v_1, v_2, \ldots, v_n

At each time step t: - learner **predicts** the label of v_t
 - learner **observes** the label of v_t

Goal: few prediction mistakes

- **The Shazoo algorithm:** *input* = weighted trees T
 (if the input is a graph G we can run Shazoo on a **spanning tree** T of G)

- **Shazoo (1) partitions** T into components (satisfying some properties), (2) uses **mincut** for estimating the labels of the component **border** vertices, (3) uses a **NN method** for predicting the required label
Analysis, implementation, and computational complexity and experiments

Accuracy: **mistake bound** of Shazoo is **optimal** (up to log factors)

Implementation: **simple and fast recursive method** (based on sum-product algorithm) for using the mincut strategy

Time complexity:
- **On line protocol:** Worst case time per prediction: $O(#\text{vertices})$
- **Batch protocol** (vertices are split into training and test sets):
 Worst case time for predicting all labels of the test set: $O(#\text{vertices})$

Space complexity: **Linear in #vertices**

Experimental results: **Shazoo outperforms** most of its competitors (e.g., Label Propagation) on all our experiments on real-world datasets
Shazoo

- Accuracy analysis: optimal mistake bound
- Scalability: very fast
- Easy to implement
- Works well in practice on real world datasets
- Easily extendible to multiclass prediction