Preference-Based Policy Iteration

Leveraging Preference Learning for Reinforcement Learning

Weiwei Cheng Johannes Fürnkranz
Eyke Hüllermeier Sang-Hyeun Park

Philipps-Universität Marburg TU Darmstadt
Classical Reinforcement Learning

- The learner produces a function which estimates the value of states or state/action pairs
 - e.g., Q-learning, TD(\(\lambda\)), ...
- The policy uses this function for making actions
 - e.g. greedy or \(\varepsilon\)-greedy policies
Policy learning

- the learner directly learns a policy
 - *actor-critic methods* learn both a value function (critic) and a policy (actor)
 - *policy gradient methods* search in the space of parametrized policies
 - e.g., a policy is a linear function that maps a state description to continuous actions
- estimation of expected reward may not be necessary
Vision: Preference-Based Reinforcement Learning

- Preference-Based Policy learning:
 - the policy function is a label ranker that ranks all actions in a given state
 - we know their order (best to last) but not their value

- Training information:
 - Action preferences and State preferences
Example: Annotated Chess Games

An annotated chess game is a collection of trajectories that are annotated with qualitative rewards for moves and states.
Example: Annotated Chess Games

- it is hard to give an exact reward signal for a move
- it is easier to specify which of two moves is better

→ Action Preferences

13th move for black:
fxe5 a5 £xc2 a¥xc2

Karjakin, Sergey 2788 – Timofeev, Arty 2665 1–0
C10 64th ch-RUS (6) 14.08.2011
Example: Annotated Chess Games

- it is hard to give an exact reward signal for a move
- it is easier to specify which of two moves is better
 → **Action Preferences**
 (?! ♂ !? ♂ !? ♂ ? !? ?! ?! ?

- it is hard to give an exact numerical score for a position
- it is easier to give a qualitative evaluation for a position
 → **State Preferences**
 (+− ± 2 3 µ + −)
Approximate Policy Iteration with Roll-Outs
(Lagoudakis & Parr, ICML-03)

- Assumption:
 - we have a generative model of the underlying Markov process
 - we can use this model for sampling action traces and reward signals
 → we can perform *roll-outs* (generate action traces / trajectories)

- **Roll-Out**
 - Estimate the value $Q^\pi(s,a)$ for performing action a in state s and following policy π thereafter
 - by performing the action and then repeatedly following the policy for at most T steps
 - and returning the average of the observed rewards

- and use these roll-outs for training a policy...
Approximate Policy Iteration with Roll-Outs
(Lagoudakis & Parr, ICML-03)

- Key idea:
 - determine the best action in each state
 - train a conventional classifier (e.g., decision tree) as a policy

API

1. start with policy π_0
2. for each state s
 - evaluate all actions with **Roll-Out**
 - determine the best action a^* (the one with highest estimated Q-value)
 - generate a training example (s,a^*) if a^* is significantly better than all other actions in state s
3. use all training examples to train a policy $\pi: S \rightarrow A$
4. goto 2. (until stop)
Label Ranking
(e.g., Hüllermeier, Fürnkranz, Cheng, Brinker, AIJ 2008)

The task in label ranking is to order a set of labels

- **Classification:**
 - pick one of a set of items

- **(Label) Preference Learning:**
 - predict a (partial or total) order $\Pi(A)$ relation on a set of items A

Label rankers can be trained with **label preferences**
- In our case we want to rank all actions based on the state description
- trained on **action preferences** of the type $(s, a_i \succ a_j)$
Preference-Based Policy Iteration

- Key idea:
 - compute preferences between pairs of actions
 - train a label ranker as a policy

PBPI
1. start with policy π_0
2. for each state s
 - evaluate all actions with Roll-Out
 - for all action pairs (a_i, a_j) determine if a_i is significantly better than a_j
 - generate a training example $(s, a_i \preceq a_j)$ if it is
 - use all training examples to train a policy $\pi: S \rightarrow \Pi(A)$
1. goto 2. (until stop)
Advantages of a preference-based framework

- Often there is **no natural numerical value**
 - a preference-based formulation allows to deal with qualitative feedback

- It is difficult to optimize **multiple objectives**
 - a preference-based framework allows to flexibly define preferences over states according to multiple criteria (e.g., Pareto dominance)

- It may **impossible or infeasible** to determine the **best action**
 - but it is often easier to compare two actions
 - in the case of roll-outs:

\[
\begin{align*}
\text{a}_1 & \quad \text{a}_2 & \quad \text{a}_3 \\
\text{a}_1 & \quad \text{a}_2 & \quad \text{a}_3 \\
\end{align*}
\]

- \(a_1\) is not significantly better than \(a_2\)
- but we know \(a_1 \notin a_3\) and \(a_2 \in a_3\)

\(\rightarrow\) no training example for API
\(\rightarrow\) 2 training examples for PBPI
Case Study 1
Learning from Action Preferences

Algorithms: each using a Neural Network as a base classifier
- **API:** Approximate Policy Iteration (Lagoudakis & Parr, ICML-03)
 - uses roll-outs to determine the best action
- **PAPI:** Pairwise Approximate Policy Iteration
 - uses all preferences that involve the best action (pairwise classification)
- **PBPI:** Preference-Based Policy Iteration
 - uses all preferences (also those involving suboptimal actions)

Domains: Standard RL benchmarks, each with 3, 5, 9, 17 actions
- Inverted Pendulum
- Mountain Car

Evaluation: following (Lagoudakis & Parr, ICML-03)
- try a variety of different parametrizations (starting states etc.)
- run each until successful or at most 10 policy iterations
- plot cumulative distribution of success rate over total number of actions taken to reach this success rate
Results: Inverted Pendulum
Results: Mountain Car
In each case PBI-i does only generate one preference per state

- PBI-1: visits the same number of states as PBI
- PBI-2: visits $k/2$ as many states (2 roll-outs vs. k roll-outs)
- PBI-3: visits $k(k-1)/2$ as many states (generates the same #preferences)
Case Study 2
Learning from Qualitative Feedback

Domain: Clinical trials of cancer treatment (Zhao et al. 2009)
- the goal is to devise a treatment policy for cancer patients
- action is the amount of medication that the patient is given

Characteristics:
- Numerical reward functions are artificial
 - The death of a patient is worse than all other results but cannot be given a reasonable number
- Multi-Objective definition of state preferences (Pareto-dominance)

Treatment A is better than Treatment B if
- at every time point, the patient treated with A feels better than the patient treated with B and
- the patient treated with A is more healthy than patient B at the end
Case Study 2
Learning from Qualitative Feedback

- random policy
- preference-based policy
- constant policies (4 settings + convex hull)

Graph showing toxicity levels against tumor size for different policy types.
Conclusions

- First step towards a framework that lifts conventional reinforcement learning into a qualitative setting
 - where reward is not absolute but relative in comparison to alternatives
- We proposed a preference-based extension of approximate policy iteration
 - which we evaluated on 2 case studies
- Case Study 1 demonstrated the utility of using additional preferences
 - a label ranker can use more information and produce better results than a classifier
- Case Study 2 demonstrated an application where
 - numerical reward signals are somewhat artificial and
 - multiple objectives can be formulated in the form of preferences
Open Questions

- How can we unify state and action preferences?
 - Key idea: Preferences over trajectories

- How can we integrate (qualitative) preference information and (quantitative) reward signals?

- How can we integrate off-line experience (annotated games) with on-line experience?

- Is there an on-line version of preference-based RL?

- Can we back up rankings of actions between states? What if we don't have a generative model?

- Can we really do this for chess?
While you ask questions...

Special issue of *Machine Learning* on **Preference Learning**

Editors: Eyke Hüllermeier and Johannes Fürnkranz

Submission Deadline: **December 31, 2011**