BOTTARI: Location based Social Media Analysis with Semantic Web

Emanuele Della Valle
Joint work with:

CEFRIEL: Irene Celino, Daniele Dell’Aglio, Marco Balduini
SALTLUX: Tony Lee, Seonho Kim
SIEMENS: Volker Tresp, Yi Huang
Watch this first :-)

Bottari - a LarKC application

http://www.youtube.com/watch?v=c1FmZUz5BOo
What have you seen?

- An augmented reality application for personalized recommendation of restaurants in Seoul
Yet another tripadvisor®?

- Yes and no!
- Same use case, more “democratic”
- We do “reality mining” by listening to the social media
Architecture

SPARQL → Query Rewriter

RDF2Matrix Plug-in → SUNS Plug-in

SLD Plug-in → SOR Invoker

Query Evaluator → out

PULL: Query Initiated

HTTP

Social Media Crawler and Sentiment Miner → Streaming Linked Data Server

Social Media Crawler and Sentiment Miner

Streaming Linked Data Server

SOR geospatial KB

PUSH: Data Initiated

androjena

PUSH: Data Initiated

SOR Invoker
Sentiment Mining

Micropost message

Morphologically Analyzable?

Yes

Rule based Analysis
Auto generated rules

No

SVMs
Syllable Kernel

Learned documents

Sentiment of the tweet

• Precision tests:
 – Auto-generated rules ≈ 70%
 – Manually-coded rules ≈ 90%
 – Syllable kernel ≈ 50~60%

• Our target > 85%
SOR - Geo-Spatial KB

twd:Tweet
 twd:messageID(xsd:string)
 twd:messageTime Stamp(xsd:string)

 twd:talksAbout
 geo:NamedPlace

 twd:following
 twd:reply
 twd:reply
 twd:talksAboutPositively
 twd:talksAboutNeutrally
 twd:talksAboutNegatively

geo:SpatialThing

sioc:creator

sioc:content(xsd:string)

twd:TwitterUser
 twd:screenName(xsd: string)
 twd:discuss
 twd:talksAboutNegatively

sioc:UserAccount
 sioc:id(xsd:string)
 geo:NamedPlace

geo:NamedPlace

geo:SpatialThing

twd:following

twd: follower

geo: NamedPlace

twd: talks About

geo: Spatial Thing

geo: Named Place

twd: talks About Negatively

geo: Named Place

geo: Spatial Thing
C-SPARQL and Streaming Linked Data Server

Re-stream

- +1 for POI

Analyze

- Count +1 for POI
 - [1 DAY]
 - [1 DAY]
 - [1 DAY]
 - [7 GRAPHs]
 - [31 GRAPHs]
 - [7 DAYS]
 - [31 DAYS]

Publish

- Most Liked POIs
 - [1 GRAPH]
 - [1 GRAPH]
 - [7 GRAPHs]
 - [31 GRAPHs]

Visualize

- Top-10 POIs
 - Weekly Plot
 - Monthly Plot
 - Weekly Map
 - Monthly Map

LEGEND

- Re-stream from database
- C-SPARQL Query
- Windower
- List View
- Plot Line View
- Heatmap View

26.10.2011 - SW Challenge 2011, ISWC 2011, Bonn, Germany
A machine learning framework for inductive materialization

- Detects interesting data patterns
- Predics RDF-triples
 - i.e., which restaurant a user will tweet positively about

Characteristics

- Capability to deal with sparse, high-dimensional and incomplete data
- Multivariate latent space based approach
- Modularized approach for easily integrating contextual information
WHERE {

?poi a ns:NamedPlace ;
 ns:name ?name ;
 geo:lat ?lat ;
 geo:long ?long .
FILTER (f:within_distance(37.5, 126.9, ?lat, ?long, 200))
FILTER (f:dest_point_viewing(37.5, 126.9, ?lat, ?long, 90, 200))

 WITH PROBABILITY ?prob
 ENSURE PROBABILITY [0.5..1] }

}
ORDER BY DESC(?numPos), ?prob,
 f:distance(37.5, 126.9, ?lat, ?long)
LIMIT 10
androjena

Probabilistic part of the query to get personalized recommendations (the “for me” button in BOTTARI)

Streaming part of the query to get trends in users' sentiment (the “emerging” button in BOTTARI)

Geo-Spatial part of the query to get POIs closer to user location

Input user query is split

Results of the different computations are joined

PULL: Query Initiated

PUSH: Data Initiated
Evaluation - Efficacy

- SUNS + C-SPARQL
- for me (SUNS)
- emerging (C-SPARQL)
- knnItem
- random
Evaluation - Efficiency

Hardware: 2.66 GHz Intel Core 2 Duo with 8 GB RAM
Evaluation – Scalability

Query Latency (sec) vs. Number of concurrent users
Conclusions

• End-user application
• Attractive and functional interface
• Real-world dynamic data
• Fully based on Semantic Web technologies
 – RDF as common data format between heterogenous components
 – SPARQL as query language
• Rigorously evaluated
 – Effective
 – High throughput for handling dynamic data
 – Scalable in number of concurrent users
• Commercial Potential
Any question?

Emanuele Della Valle
Joint work with:

CEFRIEL: Irene Celino, Daniele Dell’Aglio, Marco Balduini
SALTLUX: Tony Lee, Seonho Kim
SIEMENS: Volker Tresp, Yi Huang