Matthias Knorr and José Julio Alferes

CENTRIA, Faculdade de Ciéncias e Tecnologia/Universidade Nova de Lisboa

cce @

October 26, 2011

Professor C JTeachesTo Student T JHasTutor
dTeachesTo™ L Student JHasTutor™ L Professor
Professor C —Student HasTutor L[TeachesTo

Professor C JTeachesTo Student T JHasTutor
dTeachesTo™ L Student JHasTutor™ L Professor
Professor C —Student HasTutor L[TeachesTo

Student(Paul) HasTutor(Jane,Mary) TeachesTo(Mary,Bill)

Professor C JTeachesTo Student T JHasTutor
dTeachesTo™ L Student JHasTutor™ L Professor
Professor C —Student HasTutor L[TeachesTo

Student(Paul) HasTutor(Jane,Mary) TeachesTo(Mary,Bill)

hasKnownTutor(x) < Student(x), HasTutor(x,y)
hasUnknownTutor(x) < Student(x), not HasTutor(x,y)

@ Combine different KR formalisms (unknown individuals vs.
default negation — akin to OWL vs. non-monotonic RIF)

@ Combine different KR formalisms (unknown individuals vs.
default negation — akin to OWL vs. non-monotonic RIF)

@ Seamless integration, e.g., in the example, the facts might
be rules or even derived from more complex rules that
again use information from the ontology

@ Combine different KR formalisms (unknown individuals vs.
default negation — akin to OWL vs. non-monotonic RIF)

@ Seamless integration, e.g., in the example, the facts might
be rules or even derived from more complex rules that
again use information from the ontology

@ Query efficiently for information in large knowledge bases
without having to compute the entire model

+ One of the tractable OWL 2 profiles

+ Underlying Description Logic DL-Liter

+ Syntax: GCIs C C D, RIs R C FE, and assertions C(a) and
R(a,b) where

C—A|3R R—P|P~ D—C|-C E—R|-R

+ Standard reasoning in PTiMe (TBox) and LocSprace (ABoXx)
+ Designed for answering queries efficiently

- DL KB O + a finite set of rules, P, of the form
H <« A4,...,A,,not By,...,not B,

where H, A;, and B; are first-order atoms

+ Decidability ensured by DL-safety (application of rules
restricted to known individuals)

+ Well-founded MKNF semantics applied:

- Data complexity PTIME with tractable DL
- Admits top-down querying — SLG(O)

+ Extension of SLG Resolution with Tabling (XSB) with an
Oracle for O

CCD ENFCD

Query for D(a): O returns C(a) and E(a), F'(a)
+ Limited to ground queries to the DL Oracle

- Computational complexity of well-founded MKNF
maintained if the returned answers of @ are bounded

+ General procedure for arbitrary DL

+ Extension of SLG Resolution with Tabling (XSB) with an
Oracle for O

CCD ENFCD

Query for D(a): O returns C(a) and E(a), F'(a)
+ Limited to ground queries to the DL Oracle

- Computational complexity of well-founded MKNF
maintained if the returned answers of @ are bounded

+ General procedure for arbitrary DL
— Concrete procedure for DL-Liter is missing

@ Concrete oracle for DL-Liter

@ Paraconsistent approximation on SLG(O) for efficiency

@ Oracle may return non-ground answers; improvement on
SLG(O) efficiency

@ Returned answers are bounded by a polynomial

® Data complexity for (DL-safe) querying in PTiMe

Professor L JTeachesTo Student C JHasTutor
dTeachesTo™ L Student JHasTutor™ L Professor
Professor C —Student HasTutor L[TeachesTo

Student(Paul) <« HasTutor(Jane,Mary) «
TeachesTo(Mary,Bill) «

hasKnownTutor(x) < o(x),o(y), Student(x), HasTutor(x,y)
hasUnknownTutor(x) < o(x), o(y), Student(x), not HasTutor(x, y)

DL-safety ensured by facts o(i) < for all i in the KB

+ Atoms o(i) ground the DL-atoms
* Query for, e.g., Student(Bill) to the DL-Liter Oracle

— Oracle computation starts

+ Atoms o(i) ground the DL-atoms
* Query for, e.g., Student(Bill) to the DL-Liter Oracle

— Oracle computation starts

@ Satisfiability check for DL part and stop with fail in case of
failure

+ Atoms o(i) ground the DL-atoms
* Query for, e.g., Student(Bill) to the DL-Liter Oracle

— Oracle computation starts
@ Satisfiability check for DL part and stop with fail in case of
failure
@ Otherwise: A(Bill) and A C —Student added for new
predicate A

+ Atoms o(i) ground the DL-atoms
* Query for, e.g., Student(Bill) to the DL-Liter Oracle

— Oracle computation starts

@ Satisfiability check for DL part and stop with fail in case of
failure

@ Otherwise: A(Bill) and A C —Student added for new
predicate A

@ Satisfiability check for augmented KB and stop with
success in case of failure (successful instance check for
Student(Bill))

+ Atoms o(i) ground the DL-atoms
* Query for, e.g., Student(Bill) to the DL-Liter Oracle

— Oracle computation starts

@ Satisfiability check for DL part and stop with fail in case of
failure
@ Otherwise: A(Bill) and A C —Student added for new
predicate A
@ Satisfiability check for augmented KB and stop with
success in case of failure (successful instance check for

Student(Bill))
@ Otherwise: Resolve and return answers

Closure of negative inclusions - all implicit and explicit
inclusions with — on the right hand side

Professor C —Student
JHasTutor L —Student

dTeachesTo L —Professor
dTeachesTo C —Student
JHasTutor L —Professor

A C —Student
JTeachesTo C —A
JHasTutor T —A

Disjunction of formulas derived used for (un)satisfiability check:

0(Professor C —Student) = Jx.(Professor(x) A Student(x))

Disjunction of formulas derived used for (un)satisfiability check:

0(Professor C —Student) = Jx.(Professor(x) A Student(x))

Jx.((Jy.HasTutor(y,x)) A Student(x))
3x.((Jy.TeachesTo(y, x)) A Professor(x))
3x.((Jy.TeachesTo(x,y)) A Student(x))
Jx.((Jy HasTutor(x,y)) A Professor(x))
Jx.(A(x) A Student(x))
Jx.((Jy.TeachesTo(y, x)) A A(x))
Jx.((Jy.HasTutor(x,y)) A A(x))

X

3>)

X

Resolve A(Bill) with

Jx.(A(x) A Student(x))
Ix.((3y.TeachesTo(y,x)) A A(x))
Ix.((3y HasTutor(x,y)) A A(x))

and obtain

Student(Bill) TeachesTo(y,Bill) HasTutor(Bill,y)

Resolve A(Bill) with

Jx.(A(x) A Student(x))
Ix.((3y.TeachesTo(y,x)) A A(x))
Ix.((3y HasTutor(x,y)) A A(x))

and obtain

Student(Bill) TeachesTo(y,Bill) HasTutor(Bill,y)

Match found with TeachesTo(Mary, Bill) «.
Since we also can derive HasTutor(Bill,Mary), we obtain
hasKnownTutor(Bill).

+ Generalization of Oracles that now may return non-ground
atoms

+ Derivations using, e.g., 3x.(Professor(x) A Student(x))
avoided for efficiency

+ Well-founded MKNF semantics correspondence for
consistent KBs, otherwise paraconsistent approximation

+ Tractable data complexity

+ Tractable querying for seamless integration of DL-Liter
and non-monotonic rules

* Future work:
- Implementation building on XSB and QuOnto/Mastro
- Consider true conjunctive queries in our paraconsistent
setting

