
Querying OWL 2 QL and
Non-monotonic Rules

Matthias Knorr and José Júlio Alferes

CENTRIA, Faculdade de Ciências e Tecnologia/Universidade Nova de Lisboa

CENTRIA

October 26, 2011

Motivating Example

Professor v ∃TeachesTo Student v ∃HasTutor
∃TeachesTo− v Student ∃HasTutor− v Professor

Professor v ¬Student HasTutor− v TeachesTo

Student(Paul) HasTutor(Jane, Mary) TeachesTo(Mary, Bill)

hasKnownTutor(x)← Student(x), HasTutor(x, y)
hasUnknownTutor(x)← Student(x),not HasTutor(x, y)

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 2/14

Motivating Example

Professor v ∃TeachesTo Student v ∃HasTutor
∃TeachesTo− v Student ∃HasTutor− v Professor

Professor v ¬Student HasTutor− v TeachesTo

Student(Paul) HasTutor(Jane, Mary) TeachesTo(Mary, Bill)

hasKnownTutor(x)← Student(x), HasTutor(x, y)
hasUnknownTutor(x)← Student(x),not HasTutor(x, y)

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 2/14

Motivating Example

Professor v ∃TeachesTo Student v ∃HasTutor
∃TeachesTo− v Student ∃HasTutor− v Professor

Professor v ¬Student HasTutor− v TeachesTo

Student(Paul) HasTutor(Jane, Mary) TeachesTo(Mary, Bill)

hasKnownTutor(x)← Student(x), HasTutor(x, y)
hasUnknownTutor(x)← Student(x),not HasTutor(x, y)

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 2/14

Goals

1 Combine different KR formalisms (unknown individuals vs.
default negation – akin to OWL vs. non-monotonic RIF)

2 Seamless integration, e.g., in the example, the facts might
be rules or even derived from more complex rules that
again use information from the ontology

3 Query efficiently for information in large knowledge bases
without having to compute the entire model

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 3/14

Goals

1 Combine different KR formalisms (unknown individuals vs.
default negation – akin to OWL vs. non-monotonic RIF)

2 Seamless integration, e.g., in the example, the facts might
be rules or even derived from more complex rules that
again use information from the ontology

3 Query efficiently for information in large knowledge bases
without having to compute the entire model

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 3/14

Goals

1 Combine different KR formalisms (unknown individuals vs.
default negation – akin to OWL vs. non-monotonic RIF)

2 Seamless integration, e.g., in the example, the facts might
be rules or even derived from more complex rules that
again use information from the ontology

3 Query efficiently for information in large knowledge bases
without having to compute the entire model

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 3/14

Ingredients: 1. OWL 2 QL

• One of the tractable OWL 2 profiles
• Underlying Description Logic DL-LiteR
• Syntax: GCIs C v D, RIs R v E, and assertions C(a) and
R(a, b) where

C −→ A | ∃R R −→ P | P− D −→ C | ¬C E −→ R | ¬R

• Standard reasoning in PTIME (TBox) and LOGSPACE (ABox)
• Designed for answering queries efficiently

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 4/14

Ingredients: 2. Hybrid MKNF KBs

• DL KB O + a finite set of rules, P, of the form

H ← A1, . . . , An,notB1, . . . ,notBm

where H, Ai, and Bj are first-order atoms
• Decidability ensured by DL-safety (application of rules

restricted to known individuals)
• Well-founded MKNF semantics applied:

• Data complexity PTIME with tractable DL
• Admits top-down querying→ SLG(O)

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 5/14

Ingredients: 3. SLG(O)

• Extension of SLG Resolution with Tabling (XSB) with an
Oracle for O

C v D E u F v D

Query for D(a): O returns C(a) and E(a), F (a)
• Limited to ground queries to the DL Oracle
• Computational complexity of well-founded MKNF

maintained if the returned answers of O are bounded
• General procedure for arbitrary DL

→ Concrete procedure for DL-LiteR is missing

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 6/14

Ingredients: 3. SLG(O)

• Extension of SLG Resolution with Tabling (XSB) with an
Oracle for O

C v D E u F v D

Query for D(a): O returns C(a) and E(a), F (a)
• Limited to ground queries to the DL Oracle
• Computational complexity of well-founded MKNF

maintained if the returned answers of O are bounded
• General procedure for arbitrary DL

→ Concrete procedure for DL-LiteR is missing

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 6/14

Contribution

1 Concrete oracle for DL-LiteR
2 Paraconsistent approximation on SLG(O) for efficiency
3 Oracle may return non-ground answers; improvement on

SLG(O) efficiency
4 Returned answers are bounded by a polynomial
5 Data complexity for (DL-safe) querying in PTIME

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 7/14

Intuitive Idea - Example

Professor v ∃TeachesTo Student v ∃HasTutor
∃TeachesTo− v Student ∃HasTutor− v Professor

Professor v ¬Student HasTutor− v TeachesTo

Student(Paul)← HasTutor(Jane, Mary)←
TeachesTo(Mary, Bill)←

hasKnownTutor(x)← o(x), o(y), Student(x), HasTutor(x, y)
hasUnknownTutor(x)← o(x), o(y), Student(x),not HasTutor(x, y)

DL-safety ensured by facts o(i)← for all i in the KB

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 8/14

Query hasKnownTutor(x)

• Atoms o(i) ground the DL-atoms
• Query for, e.g., Student(Bill) to the DL-LiteR Oracle

→ Oracle computation starts

1 Satisfiability check for DL part and stop with fail in case of
failure

2 Otherwise: Â(Bill) and Â v ¬Student added for new
predicate Â

1 Satisfiability check for augmented KB and stop with
success in case of failure (successful instance check for
Student(Bill))

2 Otherwise: Resolve and return answers

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 9/14

Query hasKnownTutor(x)

• Atoms o(i) ground the DL-atoms
• Query for, e.g., Student(Bill) to the DL-LiteR Oracle

→ Oracle computation starts
1 Satisfiability check for DL part and stop with fail in case of

failure

2 Otherwise: Â(Bill) and Â v ¬Student added for new
predicate Â

1 Satisfiability check for augmented KB and stop with
success in case of failure (successful instance check for
Student(Bill))

2 Otherwise: Resolve and return answers

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 9/14

Query hasKnownTutor(x)

• Atoms o(i) ground the DL-atoms
• Query for, e.g., Student(Bill) to the DL-LiteR Oracle

→ Oracle computation starts
1 Satisfiability check for DL part and stop with fail in case of

failure
2 Otherwise: Â(Bill) and Â v ¬Student added for new

predicate Â

1 Satisfiability check for augmented KB and stop with
success in case of failure (successful instance check for
Student(Bill))

2 Otherwise: Resolve and return answers

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 9/14

Query hasKnownTutor(x)

• Atoms o(i) ground the DL-atoms
• Query for, e.g., Student(Bill) to the DL-LiteR Oracle

→ Oracle computation starts
1 Satisfiability check for DL part and stop with fail in case of

failure
2 Otherwise: Â(Bill) and Â v ¬Student added for new

predicate Â
1 Satisfiability check for augmented KB and stop with

success in case of failure (successful instance check for
Student(Bill))

2 Otherwise: Resolve and return answers

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 9/14

Query hasKnownTutor(x)

• Atoms o(i) ground the DL-atoms
• Query for, e.g., Student(Bill) to the DL-LiteR Oracle

→ Oracle computation starts
1 Satisfiability check for DL part and stop with fail in case of

failure
2 Otherwise: Â(Bill) and Â v ¬Student added for new

predicate Â
1 Satisfiability check for augmented KB and stop with

success in case of failure (successful instance check for
Student(Bill))

2 Otherwise: Resolve and return answers

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 9/14

1.Compute negative closure
Closure of negative inclusions - all implicit and explicit
inclusions with ¬ on the right hand side

Professor v ¬Student
∃HasTutor− v ¬Student
∃TeachesTo− v ¬Professor
∃TeachesTo v ¬Student
∃HasTutor v ¬Professor

Â v ¬Student
∃TeachesTo− v ¬Â
∃HasTutor v ¬Â

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 10/14

2. Translate negative closure
Disjunction of formulas derived used for (un)satisfiability check:

δ(Professor v ¬Student) = ∃x.(Professor(x) ∧ Student(x))

∃x.((∃y.HasTutor(y, x)) ∧ Student(x))
∃x.((∃y.TeachesTo(y, x)) ∧ Professor(x))
∃x.((∃y.TeachesTo(x, y)) ∧ Student(x))
∃x.((∃y.HasTutor(x, y)) ∧ Professor(x))

∃x.(Â(x) ∧ Student(x))
∃x.((∃y.TeachesTo(y, x)) ∧ Â(x))
∃x.((∃y.HasTutor(x, y)) ∧ Â(x))

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 11/14

2. Translate negative closure
Disjunction of formulas derived used for (un)satisfiability check:

δ(Professor v ¬Student) = ∃x.(Professor(x) ∧ Student(x))

∃x.((∃y.HasTutor(y, x)) ∧ Student(x))
∃x.((∃y.TeachesTo(y, x)) ∧ Professor(x))
∃x.((∃y.TeachesTo(x, y)) ∧ Student(x))
∃x.((∃y.HasTutor(x, y)) ∧ Professor(x))

∃x.(Â(x) ∧ Student(x))
∃x.((∃y.TeachesTo(y, x)) ∧ Â(x))
∃x.((∃y.HasTutor(x, y)) ∧ Â(x))

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 11/14

3. Derive Meaningful Answers

Resolve Â(Bill) with

∃x.(Â(x) ∧ Student(x))
∃x.((∃y.TeachesTo(y, x)) ∧ Â(x))
∃x.((∃y.HasTutor(x, y)) ∧ Â(x))

and obtain

Student(Bill) TeachesTo(y, Bill) HasTutor(Bill, y)

Match found with TeachesTo(Mary, Bill)←.
Since we also can derive HasTutor(Bill, Mary), we obtain
hasKnownTutor(Bill).

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 12/14

3. Derive Meaningful Answers

Resolve Â(Bill) with

∃x.(Â(x) ∧ Student(x))
∃x.((∃y.TeachesTo(y, x)) ∧ Â(x))
∃x.((∃y.HasTutor(x, y)) ∧ Â(x))

and obtain

Student(Bill) TeachesTo(y, Bill) HasTutor(Bill, y)

Match found with TeachesTo(Mary, Bill)←.
Since we also can derive HasTutor(Bill, Mary), we obtain
hasKnownTutor(Bill).

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 12/14

Properties

• Generalization of Oracles that now may return non-ground
atoms

• Derivations using, e.g., ∃x.(Professor(x) ∧ Student(x))
avoided for efficiency

• Well-founded MKNF semantics correspondence for
consistent KBs, otherwise paraconsistent approximation

• Tractable data complexity

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 13/14

Conclusions

• Tractable querying for seamless integration of DL-LiteR
and non-monotonic rules

• Future work:
• Implementation building on XSB and QuOnto/Mastro
• Consider true conjunctive queries in our paraconsistent

setting

Matthias Knorr and José J. Alferes - CENTRIA, FCT/UNL Querying OWL 2 QL and Non-monotonic Rules 14/14

