Generative and Discriminative Models in Statistical Parsing

Michael Collins

MIT

December 11, 2009
Canadian Utilities had 1988 revenue of C$ 1.16 billion, mainly from its natural gas and electric utility businesses in Alberta, where the company serves about 800,000 customers.
Generative and discriminative models for parsing:
 - SPATTER
 - 5 lexicalized models

Two hybrid generative/discriminative models
Discriminative Model 1: SPATTER

(Magerman 1995; Jelinek et al 1994)

- Input sentence $= x$, parse tree y represented as a sequence of decisions, $d_1d_2 \ldots d_n$.

\[
P(y|x) = \prod_{i=1}^{n} P(d_i|d_1 \ldots d_{i-1}, x)
\]

$P(d_i|d_1 \ldots d_{i-1}, x)$ estimated using decision trees
The Label-Bias Problem

\[P(y|x) = \prod_{i=1}^{n} P(d_i|d_1 \ldots d_{i-1}, x) \]

- If you think the label-bias problem is bad for MEMMs, you should try parsing...

- bill VP NP CC N V N

 bill VB N and jane likes bill

- bill likes mary
Discriminative Model 2: Lexical Dependencies (C, 1996)

The “probability” for this parse tree:

\[
P(S-VP-NP | \text{Mary saw Bill}) \times P(VP-V-NP | \text{Mary saw Bill}) \times P(\text{ROOT} | \text{Mary saw Bill})
\]
Results

<table>
<thead>
<tr>
<th>Model</th>
<th>F-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1: SPATTER</td>
<td>84.1</td>
</tr>
<tr>
<td>D2</td>
<td>85.5</td>
</tr>
<tr>
<td>G1</td>
<td>87.8</td>
</tr>
<tr>
<td>G2</td>
<td>89.6</td>
</tr>
<tr>
<td>D4</td>
<td>91.1</td>
</tr>
</tbody>
</table>

- **D1**: \(P(y|x) = \prod_{i=1}^{n} P(d_i|d_1 \ldots d_{i-1}, x) \)

- **D2**: \(P(\text{S-VP-NP}|\text{Mary saw Bill}) \)

- **D2** gives some improvements, and is considerably simpler, but it’s pretty suspect as a probabilistic model
A parse tree is represented as a set of *spines* and *adjunctions*:
Markov Grammars (continued)

Each spine has a separate left/right weighted finite-state automaton (HMM) at each level of the tree (in this case S, VP)

The automata generate sequences of modifier spines at each level of the tree
Markov Grammars (continued)

$P(\text{NP-cake}|\text{VP-v-eats, RIGHT, ADJACENT})$

- Each spine has a separate left/right weighted finite-state automaton (HMM) at each level of the tree (in this case $S, \ VP$)

- The automata generate sequences of modifier spines at each level of the tree
Each spine has a separate left/right weighted finite-state automaton (HMM) at each level of the tree (in this case S, VP)

The automata generate sequences of modifier spines at each level of the tree
Markov Grammars (continued)

Each spine has a separate left/right weighted finite-state automaton (HMM) at each level of the tree (in this case S, VP)

The automata generate sequences of modifier spines at each level of the tree

$$P(\text{STOP}|\text{VP-}v\text{-eats, RIGHT, !ADJACENT})$$
Each spine has a separate left/right weighted finite-state automaton (HMM) at each level of the tree (in this case S, VP)

The automata generate sequences of modifier spines at each level of the tree
Each spine has a separate left/right weighted finite-state automaton (HMM) at each level of the tree (in this case S, VP).

The automata generate sequences of modifier spines at each level of the tree.
Markov Grammars (continued)

Each spine has a separate left/right weighted finite-state automaton (HMM) at each level of the tree (in this case S, VP).

The automata generate sequences of modifier spines at each level of the tree.
Each spine has a separate left/right weighted finite-state automaton (HMM) at each level of the tree (in this case S, VP).

The automata generate sequences of modifier spines at each level of the tree.
Results

<table>
<thead>
<tr>
<th>Model</th>
<th>F-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1: SPATTER</td>
<td>84.1</td>
</tr>
<tr>
<td>D2</td>
<td>85.5</td>
</tr>
<tr>
<td>G1</td>
<td>87.8</td>
</tr>
<tr>
<td>G2</td>
<td>89.6</td>
</tr>
<tr>
<td>D4</td>
<td>91.1</td>
</tr>
</tbody>
</table>

- **D2**: $P(S-VP-NP|\text{Mary saw Bill})$

- **G1/G2**: $P(NP-cake|VP-v-eats, \text{RIGHT, ADJACENT, ...})$

- Markov grammars are coherent probabilistic models, and give improvements, but there are many details...
A discriminative model for dependency parsing:

\[y^* = \arg \max_y \sum_{r \in y} w \cdot f(x, r) \]

where each \(r \) is a tuple \(\langle h, m \rangle \) representing a dependency from modifier \(m \) to head \(h \)

\(f(x, r) \) is a feature vector associated with dependency \(r \), \(w \) is a parameter vector (trained using MIRA, averaged perceptron, etc.)

A simple, direct model, allows easy incorporation of features. Very easy to replicate
A parse tree is represented as a set of spines and adjunctions:
Discriminative Model 4: a TAG-Based Model
(Carreras, C, and Koo, 2008)

Feature vectors $f(x, h, m, \sigma_h, \sigma_m, \text{POS})$ where
- x is the sentence
- $h = 3$ (index of head word), $m = 5$ (index of modifier word)
- σ_h and σ_m are the head and modifier spines
- POS is the position being adjoined into (e.g., VP)
Discriminative Model 4: a TAG-Based Model
(Carreras, C, and Koo, 2008)

Feature vectors $f(x, h, m, \sigma_h, \sigma_m, \text{POS})$ where
- x is the sentence
- $h = 3$ (index of head word), $m = 5$ (index of modifier word)
- σ_h and σ_m are the head and modifier spines
- POS is the position being adjoined into (e.g., VP)
Discriminative Model 4: a TAG-Based Model

(Carreras, C, and Koo, 2008)

Feature vectors $f(x, h, m, \sigma_h, \sigma_m, \text{POS})$ where

- x is the sentence
- $h = 3$ (index of head word), $m = 5$ (index of modifier word)
- σ_h and σ_m are the head and modifier spines
- POS is the position being adjoined into (e.g., VP)
Discriminative Model 4: a TAG-Based Model

(Carreras, C, and Koo, 2008)

Feature vectors $f(x, h, m, \sigma_h, \sigma_m, \text{POS})$ where

- x is the sentence
- $h = 3$ (index of head word), $m = 5$ (index of modifier word)
- σ_h and σ_m are the head and modifier spines
- POS is the position being adjoined into (e.g., VP)
Discriminative Model 4: a TAG-Based Model
(Carreras, C, and Koo, 2008)

Feature vectors $f(x, h, m, \sigma_h, \sigma_m, \text{POS})$ where

- x is the sentence
- $h = 3$ (index of head word), $m = 5$ (index of modifier word)
- σ_h and σ_m are the head and modifier spines
- POS is the position being adjoined into (e.g., VP)
Discriminative Model 4: a TAG-Based Model

(Carreras, C, and Koo, 2008)

Feature vectors $f(x, h, m, \sigma_h, \sigma_m, \text{POS})$ where

- x is the sentence
- $h = 3$ (index of head word), $m = 5$ (index of modifier word)
- σ_h and σ_m are the head and modifier spines
- POS is the position being adjoined into (e.g., VP)
Discriminative Model 4: a TAG-Based Model
(Carreras, C, and Koo, 2008)

Feature vectors \(f(x, h, m, \sigma_h, \sigma_m, \text{POS}) \) where
- \(x \) is the sentence
- \(h = 3 \) (index of head word), \(m = 5 \) (index of modifier word)
- \(\sigma_h \) and \(\sigma_m \) are the head and modifier spines
- POS is the position being adjoined into (e.g., VP)
Discriminative Model 4: a TAG-Based Model
(Carreras, C, and Koo, 2008)

Trigram dependency features:

\[
\begin{array}{ccc}
S & \rightarrow & VP \\
V & \rightarrow & v \\
NP & \rightarrow & n \\
PP & \rightarrow & p \\
boys & \rightarrow & eat \\
a & \rightarrow & cake \\
a & \rightarrow & fork \\
with & \rightarrow & \\
\end{array}
\]
Discriminative Model 4: a TAG-Based Model
(Carreras, C, and Koo, 2008)

More trigram dependency features:

```
S -> VP -> PP -> NP
```

```
boys, eat with a cake, a fork
```
Results

<table>
<thead>
<tr>
<th>Model</th>
<th>F-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1: SPATTER</td>
<td>84.1</td>
</tr>
<tr>
<td>D2</td>
<td>85.5</td>
</tr>
<tr>
<td>G1</td>
<td>87.8</td>
</tr>
<tr>
<td>G2</td>
<td>89.6</td>
</tr>
<tr>
<td>D4</td>
<td>91.1</td>
</tr>
</tbody>
</table>

- **D1:**

 \[
 y^* = \arg \max_y \sum_{i=1}^{n} \log P(d_i|d_1 \ldots d_{i-1}, x)
 \]

- **D4:**

 \[
 y^* = \arg \max_y \sum_{r \in y} w \cdot f(x, r)
 \]
"Hybrid" Discriminative/Generative Model 1: Word Clusters (Koo, C, Carreras, 2008)

Feature vectors $f(x, h, m)$ depend heavily on lexical items, which are sparse

A semi-supervised method: use unlabeled data to induce hierarchical word clusters, then use these within features
Results

Dependency accuracy for a 2nd order parser:

<table>
<thead>
<tr>
<th>Training size</th>
<th>Baseline</th>
<th>Clusters</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1k</td>
<td>81.95</td>
<td>85.33</td>
<td>3.38</td>
</tr>
<tr>
<td>2k</td>
<td>85.02</td>
<td>87.54</td>
<td>2.52</td>
</tr>
<tr>
<td>4k</td>
<td>87.88</td>
<td>89.67</td>
<td>1.79</td>
</tr>
<tr>
<td>8k</td>
<td>89.71</td>
<td>91.37</td>
<td>1.66</td>
</tr>
<tr>
<td>16k</td>
<td>91.14</td>
<td>92.22</td>
<td>1.08</td>
</tr>
<tr>
<td>32k</td>
<td>92.09</td>
<td>93.21</td>
<td>1.12</td>
</tr>
<tr>
<td>All</td>
<td>92.42</td>
<td>93.30</td>
<td>0.88</td>
</tr>
</tbody>
</table>
"Hybrid" Discriminative/Generative Model 2
(Suzuki et al, 2009)

Step 1 Train a CRF-style dependency model on the labeled examples

\[y^* = \arg\max_y \sum_{r \in y} w \cdot f(x, r) \]

Step 2 Use the model from step 1 to produce parse trees on unlabeled data, and estimate generative models

\[P(y, x; \theta_i) \text{ for } i = 1 \ldots k \]

(typically \(k \approx 100 \))

Step 3 Add new features \(\log P(y, x; \theta_i) \) for \(i = 1 \ldots k \) to the supervised model, and retrain
The k generative models are derived directly from the original feature vectors $f(x, r)$!

First partition the feature vector into k sets of disjoint features (typically by feature type)

Next, define a naive-bayes model for each partition
Final Thoughts

- Advantages of generative models:
 - Very fast to train
 - Very useful in semi-supervised approaches
 - Invaluable as language models in speech recognition, machine translation
 - Better than discriminative models with small amounts of training data? (I’m skeptical about this...)

- Advantages of discriminative models:
 - Very easy to incorporate new features (including features induced from unlabeled data)
 - Easy to implement and replicate (no issues of smoothing, independence assumptions etc. — all you need is the feature definitions)