Learning in the real world

David J. Hand

Imperial College London
and
Winton Capital Management
In science:

first develop the big idea

then handle the details

because the world is a complex place

so that theory *does not quite* match observations

For example:

Newton’s laws of motion

- many interacting bodies - too much detail
- relativity - so Newton’s laws are an approximation
The ‘details’ in learning theory include things like

Data quality
Missing data
Measuring the right thing
Uncertainty and ambiguity about objectives
Non-stationarity
Reactive non-stationarity
How to measure performance
etc
The ‘details’ arise from the context

All problems have different contexts

All problems are different
For example:

Often some data are *missing*

Missing *fields* in records: obvious potential problems

Missing *records*: you don’t see what you don’t see

Not always obvious that something is missing
A vehicle to illustrate the ideas:

The comparison of classification rules

Two-class classification abstract structure:

Given a set of objects, for each of which we know their true class and also a vector of descriptive variables, derive a rule which will allow one to classify new objects from their descriptive vectors as accurately as possible

Function mapping the descriptive vector to a ‘score’ s

Threshold t such that $s > t$ \Rightarrow assign to class 1
$s \leq t$ \Rightarrow assign to class 0
Basic structure:
- Build classifiers using training data
- Apply classifiers using test data
- See which is best

The details here:
- what does ‘best’ mean
- what does ‘as accurately as possible’ mean?

Problem-based criteria
vs
Classification accuracy criteria
Problem-based criteria

- speed of construction
- speed of classification
- ability to handle very large data sets
- effectiveness on small-n-large-p problems
- ability to cope with incomplete data
- interpretability
- ease with which important features can be identified
- unbalanced data sets
- accuracy of probability estimates
- etc
Classification accuracy criteria

- Sensitivity (recall), specificity
- Positive predictive value (precision)
- Negative predictive value
- Error rate
- Kappa statistic
- F-measure
- Youden statistic, KS, maximum vertical distance, ...
- AUC (!)
- H-measure
 etc
A case study: Comparing credit scorecards

Descriptive vectors:
- applicant characteristics, past credit behaviour
- can be very high dimensional (10s of thousands)

Can be very large data sets (millions, billions)

Score may be used for classification and decision making
Example 1: Building a new (better) scorecard

Selection bias: a fundamental problem

Training set:
 Existing customers, with known characteristics, and known ‘good/bad’ outcomes

 But ‘existing customers’ are those we previously thought were likely to be good

 They are not a random sample from the population of potential applicants
Extreme illustration:

Binary feature X: highly predictive
- $X = 1 \implies$ will certainly default
- $X = 0 \implies$ will certainly not default

All other predictors, Y, are poor
So we previously rejected all those applicants with $X=1$
Our training set contains none with $X=1$
So when we build a new classifier, variable X is not identified as a good predictor
and we are left only with the poor predictors Y to use in our new scorecard
To tackle use ‘reject inference’

= attempt to infer true class of the previously rejected applicants

- reweight good/bad proportions at each predictor vector
- extrapolate the estimated probability of being bad
- accept a sample of those who should be rejected
- follow up the rejects with other banks
- etc

= need extra information from somewhere
Example 2: Choosing a new scorecard

Changing economic conditions
Changing competitive environment
Changing financial products

Mean that scorecard performance degrades over time
So scorecards need to be updated and replaced

Comparison is central to this process

Vignette: Startup scoring company TopScore claims its new SVM scorecard is superior to the current neural network scorecard and a test is set up
‘Old’ scorecard = existing ANN one
‘New’ scorecard = TopScore SVM

Test format: apply both scorecards to the same sample of customers and see which gives best results

But this sample of customers will have been accepted using the old scorecard:

⇒ a fundamental data asymmetry

With implications
\(f(s_o, s_n) \) is the joint population density function of old and new scores for the **bad** class

with marginal density functions \(f_o(s_o) \) and \(f_n(s_n) \)

\(g(s_o, s_n) \) is the joint population density function of old and new scores for the **good** class

with marginal density functions \(g_o(s_o) \) and \(g_n(s_n) \)

Corresponding cdfs \(F_o, F_n, G_o, \) and \(G_b \).

Assume **goods** tend to score higher than **bads**:
\[\Rightarrow F_o(s) > G_o(s) \text{ and } F_n(s) > G_n(s) \]
The crunch:
Training data have scores \(\{(s_o, s_n) : s_o > t\} \)

Example:

Population \((s_o, s_n) \) bivariate normal
Prob of being good increases with \(s_o + s_n \)
Bad class scores

Good class scores
The effect:

Favours the new scorecard

leading to:

bias in favour of *TopScore’s* new SVM model, even though it is really no better at all

unnecessarily incurring costs and risk of replacing old by new
Example 3: Fraud detection

Issue 1: What is a good system?

One which

‘classifies fraudulent transactions as fraudulent, and legitimate transactions as legitimate’ ?

But: no method is perfect
Need: criteria for assessing effectiveness

Timeliness: time scale: count of fraud transactions misclassified
Different weights on two kinds of misclassification
<table>
<thead>
<tr>
<th>Predicted class</th>
<th>True class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fraud</td>
</tr>
<tr>
<td>Fraud</td>
<td>a</td>
</tr>
<tr>
<td>Legitimate</td>
<td>c</td>
</tr>
</tbody>
</table>

A very well known consumer credit organisation evaluates fraud using the two ratios

$$R_1 = \frac{a}{a + c} \quad (\text{recall, sensitivity})$$

$$R_2 = \frac{b}{a + b} \quad (1-\text{precision})$$
In itself, this would appear to be fine

But in fact, the units of assessment used are *accounts*

An account is flagged as potentially fraudulent if *at least one transaction is so flagged*

Problem 1: This means that one can make the probability of flagging an account as fraudulent as near to 1 as one wishes by examining enough transactions

Problem 2: Fails to include *timeliness* in the measure
A superior measure

An *epoch* is a transaction sequence ending with either
(i) a *fraud flag* on a true fraud
Or
(ii) or end of observed sequence

\[\text{nnnnfnnfnnn} \text{nnnfnfnnnnnnnnnnnnf} \]

<table>
<thead>
<tr>
<th>Predicted class</th>
<th>True class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fraud</td>
</tr>
<tr>
<td>Fraud</td>
<td>a</td>
</tr>
<tr>
<td>Legitimate</td>
<td>c</td>
</tr>
<tr>
<td>Predicted class</td>
<td>True class</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>Fraud</td>
</tr>
<tr>
<td>Fraud</td>
<td>1</td>
</tr>
<tr>
<td>Legitimate</td>
<td>3</td>
</tr>
</tbody>
</table>

This matrix includes *timeliness* in the count c
<table>
<thead>
<tr>
<th>Predicted class</th>
<th>True class</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fraud</td>
<td>Legitimate</td>
</tr>
<tr>
<td>Fraud</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Legitimate</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

\[
\text{cost} = a + b + kc
\]

worst case \[
\text{cost} = k(a + c) + b + d
\]

\[k = \text{relative cost of ‘misclassifying fraud as legitimate’ versus converse}\]

Overall performance measure for given threshold:

\[
T_1 = \frac{(a + b + kc)}{(k(a + c) + b + d)}
\]

This is very different from misclassification rate

\[
e = \frac{(b + c)}{(a + b + c + d)}
\]
Issue 2: Bias in evaluation

True transaction state sequence

\[nnnnnnnnnnnnnfnfnnffffnfff\]

Detector D1 in place
Detector D2 proposed new detector

\[D_i, \ i = 1, 2\] taking values 0 (no fraud suspected)
1 (fraud suspected)
\[D_1 = 1 \] and true state \(n \) means:

\textit{investigation and then sequence continues}

\[D_1 = 1 \] and true state \(f \) means

\textit{investigation and then sequence ends}

AND

\textit{true states of all previous transactions discovered}
Define, for $j, k = 0, 1$

$$p_{jk}^{(n)} = P(D_1 = j, D_2 = k \mid n)$$

and

$$p_{jk}^{(f)} = P(D_1 = j, D_2 = k \mid f)$$

Then the new detector, D2, is unequivocally better than the old one, D1, if both

(i) $P(D_2 = 1 \mid f) > P(D_1 = 1 \mid f)$

and

(ii) $P(D_2 = 1 \mid n) \leq P(D_1 = 1 \mid n)$
These are equivalent to

(i) \(p^{(f)}_{01} > p^{(f)}_{10} \)

and

(ii) \(p^{(n)}_{01} \leq p^{(n)}_{10} \)

<table>
<thead>
<tr>
<th></th>
<th>D1</th>
<th>D2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D1</td>
<td>0</td>
<td>(p_{00})</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>(p_{10})</td>
</tr>
</tbody>
</table>
Consider straightforward estimates of the $p_{f_{jk}}^{(f)}$ and $p_{n_{jk}}^{(n)}$ based on proportions of observations in

<table>
<thead>
<tr>
<th>n</th>
<th>D2</th>
<th>f</th>
<th>D2</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>D1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>D1</td>
<td>1</td>
</tr>
</tbody>
</table>

BUT: All observed sequences in which a fraud is detected end in either the $(D_1 = 1, D_2 = 0)$ cell or the $(D_1 = 1, D_2 = 1)$ cell of the f table.
Consider a single terminating account with c fraudulent transactions

The $(c-1)$ undetected frauds contribute only to f_{00} or f_{01}

Hence\[E(f_{0k} | c) = (c - 1) \frac{p_{0k}^{(f)}}{p_{0+}^{(f)}}\]

The one final detected fraud contributes to f_{1k}

Hence\[E(f_{1k} | c) = \frac{p_{1k}^{(f)}}{p_{1+}^{(f)}}\]

So the expectations of simple multinomial estimates are

\[E(\tilde{p}_{0k}^{(f)} | c) = (1 - 1/c) \frac{p_{0k}^{(f)}}{p_{0+}^{(f)}}\]
\[E(\tilde{p}_{1k}^{(f)} | c) = \frac{1}{c} \frac{p_{1k}^{(f)}}{p_{1+}^{(f)}}\]
e.g. suppose $c = 1$

Then

$$\tilde{p}_{0k}^{(f)} = 0$$

$$E\left(\tilde{p}_{1k}^{(f)} | 1\right) = \frac{p_{1k}^{(f)}}{p_{1+}^{(f)}} \geq p_{1k}^{(f)}$$

So the condition for D2 beating D1, that $p_{01}^{(f)} > p_{10}^{(f)}$ cannot be met by these estimators.

If you use the simple multinomial estimators there is an intrinsic built-in bias favouring the existing detector
Example 4: Discrimination

Credit scoring is fundamentally *discriminatory*; seeks to discriminate good risks from bad risks
 (c.f. discriminate good students from bad, safe drivers from unsafe, ...)

So: make the scorecard as effective as possible
 The better the model, the more effective the bank, the lower the interest needed to cover the cost of defaulters

So: include all potential predictive variables we can think of
BUT:
US Equal Credit Opportunity Act, 1974:
 it is illegal for creditors to discriminate against any applicant on
 the basis of race, colour, religion, national origin, sex, marital
 status, or age

Similar conditions in other countries

Even though (for example)
 - women are generally less risky than men
 - older men are generally less risky than younger

The Act makes it illegal to treat differently people
who belong to certain groups with known different
degrees of risk
So, as a consequence,

credit scorecards do not include sex as a predictor variable
to the disadvantage of the lower risk female class
who therefore have their loan applications rejected more often than their risk probability would justify
Solution:

If sex is a predictor, but the law says can’t include sex, then include a proxy variable, Y, highly correlated with sex

Until the law catches up and makes Y illegal

Knocking out these variables risks knocking out further predictive power independent of sex
Solution depends on the real aim

Aim (A): ‘treat men and women equally’ in the sense that the same proportion of men and women are allocated to the good (and hence also bad) class

Aim (B): build the best risk classification model we can, but one which does not let sex contribute to our classification, even via variables we haven’t thought of

Illustrate with simple model: score is weighted sum of predictors, compare with threshold
(A) ‘treat men and women equally’ in the sense that the same proportion of men and women are allocated to the good (and hence also bad) class

Build separate models for men and women

Choose thresholds for each model so same proportion are accepted

‘Fair’ in the sense that equal proportions are accepted

‘Unfair’ in the sense that the risk thresholds differ
(B) build the best risk classification model we can, but one which does not let sex contribute to our classification, even via variables we haven’t thought of

Build a single model using all the variables we can think of, including sex and any proxies

then make classification using a score from the model but ignoring sex

‘Fair’ in the sense that it makes a decision in the predictor space orthogonal to sex

‘Unfair’ in the sense that the decisions are not based on the best possible estimates of default probability
Current situation is neither (A) nor (B)

So that

neither are the conditions of the ECOA being met

nor are people being assigned to a risk class on the basis of the best estimates of their default probability

The law has got itself into an ethical twist
Relevance:

Earlier this year the European Court of Justice ruled that it was unlawful sex discrimination for insurers to distinguish between men and women when deciding premiums despite the fact that women are safer drivers and live longer.
1978: female employees sued Los Angeles Department of Water and Power

on the grounds that they had to pay larger pension contributions, and thus took home less money (based on longer life expectancy)

Their case was successful
Issues:

- people should be treated as individuals, rather than stereotyped. But probability estimates must be based on groups, not individuals

- it is intrinsic to a *civilised* society that some risks subsidise others. No fault risks (e.g. genetic) might be subsidised. What about lifestyle risks (e.g. smoking)? Moral hazard

- does our performance criterion refer to individuals or populations?
Suppose cost of driving insurance is equalised at a weighted mean of men and women

Then more of the high risk category will be encouraged to drive (as it’s cheaper to take out insurance), and fewer of the lower risks will be encouraged to drive (as it’s more expensive)

But paying for insurance does not change the risk

So that the risk to all of us is increased
Conclusions:

It’s not enough to develop an effective algorithm

Each problem is different

It’s crucial to match the solution to the problem

The details count
thank you!