Evolvability of Linear Threshold Functions

Vitaly Feldman
IBM Almaden Research Center
Learning

- Predict f on $x \in X$
- Direct programming is infeasible
- Use examples of f

Evolvability

- Realize h on $x \in X$
- No programmer
- Try variants of current h and choose the “fittest”

Human brain

Biological evolution
The gene expression example

- The expression of each gene in the DNA is regulated by multiple transcription factors (TF)
 - Proteins that detect various conditions of the environment
 - Internal signals/other proteins
 - Presence/absence of a chemical element
 - Temperature, light etc.
- More than 2000 known TFs
- How do these regulation mechanisms evolve?
- E.g. Optimally the gene should be expressed whenever several fixed (but unknown) TFs are jointly present
 - Can the optimal combination of TFs evolve efficiently
Model [Valiant 06]

- Based on PAC learning model [Valiant 84]

Random examples: $(x, f(x))$
$x \sim D$ over $X, f \in C$

Learning algorithm:
For every $f, D, \epsilon > 0$, output h
s.t. $\Pr[f(x) = h(x)] \geq 1 - \epsilon$
Poly in $\frac{1}{\epsilon}, |x|, |f|$ time

Selection model:
Poly in $\frac{1}{\epsilon}, |x|, |f|$ time

Mutation algorithm:
For every $f, D, \epsilon > 0$, reach h
s.t. $\Pr[f(x) = h(x)] \geq 1 - \epsilon$
Poly in $\frac{1}{\epsilon}, |x|, |f|$ time
Mutation algorithm

- R - representation class of functions over X
 - E.g. all linear thresholds over \mathbb{R}^n
- M - randomized algorithm that given $r \in R$ outputs (a random mutation) $r' \in R$
 - Efficient: poly in $\frac{1}{\epsilon}, n$
 - E.g. choose a random i and adjust w_i by 0, +1 or -1 randomly
Selection

- Fitness/performance $P_D(f, r) \in [-1, 1]$
 - Correlation: $E_D[f(x)r(x)]$
 - Quadratic loss: $1 - E_D[(f(x) - r(x))^2]/2$
- For $r \in R$ sample $M(r)$ p times: r_1, r_2, \ldots, r_p
- Estimate empirical performance of r and each r_i using s samples: $\tilde{P}_D(f, r_i)$

p, s and $1/t$ are “feasible” (polynomial in $n, 1/\epsilon$)
Evolvability

- Class of functions C is evolvable over D if exists an evolution algorithm (R, M) and a polynomial $\ell(\cdot, \cdot)$ s.t.

For every $f \in C, r \in R, \varepsilon > 0$ and a sequence $r_0 = r, r_1, r_2, \ldots$ where $r_{i+1} \leftarrow \text{Select}(R, M, r_i)$ it holds: $P_D(f, r_{\ell(\frac{1}{\varepsilon})}) \geq 1 - \varepsilon$ w.h.p.

- Evolvable (distribution-independently)
 - Evolvable for all D by the same mutation algo (R, M)
 - Evolvable weakly
 - $P_D(f, r_{\ell(\frac{1}{\varepsilon})}) \geq 1/poly(n)$
Prior work

- \(\text{EV} \subseteq \text{PAC} \)
- \(\text{EV} \subseteq \text{SQ} \neq \text{PAC} \) [Valiant 06]
 - Statistical Query learning [Kearns 93]: estimates of \(E_D[\psi(x, f(x))] \) for an efficiently evaulatable \(\psi \)
- Monotone conjunctions are evolvable over the uniform distribution on \(\{0,1\}^n \) [Valiant 06]
 - Improved to general conjunctions [Jacobson 09, KVV 10]
- \(\text{EV} = \text{CSQ} \) [F 08]
 - Learnability by correlational statistical queries
 \(\text{CSQ}: E_D[\phi(x)f(x)] \)
- Fixed \(D \): \(\text{EV} = \text{CSQ} = \text{SQ} \) [Bshouty, F 01]
- All \(D \): \(\text{CSQ} \neq \text{SQ} \)
 - General linear threshold functions are not evolvable, even weakly
- Singletons are evolvable [F 09α]
This work

- Are conjunctions evolvable distribution-independently?
 - [F, Valiant COLT 08 Open problem]
- Evolvable weakly [F 08]
- Singletons are evolvable [F 09a]
- General linear threshold functions are not evolvable, even weakly [F 08]
- NO
 - Not CSQ learnable
 - Monotone conjunctions of a superconstant number of variables are not CSQ learnable to subconstant accuracy ϵ
 - No boosting for evolvability
Overview

- Information-theoretic lower bound on CSQ learnability
 - Weak SQ learning, fixed D [BFJKMR 94; Bshouty, F 01; Yang 05]
 - Weak CSQ learning [F 08]
 - (General) SQ learning, fixed D [BCGKL 07; Simon 07; F 09b; Szoreniy 09]

For every function $\phi: X \rightarrow [-1,1]$ and distribution D over X there exists a poly-sized set of functions G that “distinguishes” between any $f \in C$ over any distribution D' from ϕ over D

Exists $g \in G$, $|E_{D'}[f \cdot g] - E_D[\phi \cdot g]| \geq \tau$,

Unless f is ϵ −close over D' to a fixed h
Hard to distinguish function-distribution pairs

- Let T_A be the conjunction of variables in a set A
- Define D_A and $\theta_A : X \rightarrow [-1,1]$ such that
 - T_A over D_A is indistinguishable from $c + \theta_A$ over U ($c \in [-1,1]$)
 - for size-k A and B that share less than $k/3$ variables $E_U[\theta_A \cdot \theta_B] = 0$
- For $k = \omega(1)$ there are $n^{\omega(1)}$ size-k sets of variables s.t. no two share $\geq \frac{k}{3}$ variables
- Cannot be distinguished using a polynomial number of functions from c over U
- Main idea: Correlation is determined by Fourier coefficients. D_A “erases” low order Fourier coefficients of T_A ($\leq k/3$). QED.
Selection

- Fitness/performance $P_D(f, r) \in [-1, 1]$
 - Correlation: $E_D[f(x)r(x)]$
 - Quadratic loss: $1 - E_D[(f(x) - r(x))^2]/2$
- For $r \in R$, sample $M(r)$ p times: r_1, r_2, \ldots, r_p
- Estimate empirical performance of r and each r_i using s samples: $\tilde{P}_D(f, r_i)$

Robust to selection mechanism [F 09a]
Robust to drift [KVV 10]
Related work (quadratic loss)

- Decision lists over U on $\{0,1\}^n$ [Michael 07]
- Any SQ-learnable C (non-monotone) [F 09a]
- Singletons [F 09a]
- Any SQ-learnable C, fixed D [F 09b]
- Conjunctions [F 09b]
- Linear functions [P. Valiant 11]
This work: evolvability of LTFs

- LTFs are evolvable strictly monotonically with quadratic loss
 - Polynomial in $1/\gamma$ where γ is the margin of f
 - Implies: conjunctions, polynomial integer weight LTFs over $\{0,1\}^n$
 - Everything that can be efficiently embedded into LTFs with margin

- Simple mutation algorithm
 - Choose random variable x_i (or a constant)
 - Add or subtract ax_i from $r(x)$
 - Clip-off values of $r(x) + ax_i$ outside of $[-1,1]$: $P(r(x) + ax_i)$

- Can be extended to other loss functions and has additional robustness properties
If $E_D[(f(x) - r(x))^2] \geq \epsilon$ then exists $i \in [0,1,\ldots,n]$ and α s.t.

$$|\alpha| \geq \frac{1}{\text{poly}(n,\frac{1}{\epsilon})} \text{ and }$$

$$E_D[(f(x) - P(r(x) + \alpha x_i))^2] \leq E_D[(f(x) - r(x))^2] - \alpha^2$$

Strictly beneficial neighborhood implies strictly monotone evolvability

Proof:

1. Gradient of $E_D[(f(x) - r(x))^2]$ at $r(x)$ is $-2(f(x) - r(x))$
2. Margin γ implies that $E_D[(f - r)(\sum w_i x_i - \theta)] \geq \epsilon \gamma / 2$
3. Exists $i \in [0,1,\ldots,n]$ s.t. $|E_D[(f - r) x_i]| \geq \epsilon \gamma / (3 \sqrt{n})$
4. $\alpha = +/ - \epsilon \gamma / (3 \sqrt{n})$ gives

$$E_D[(f(x) - (r(x) + \alpha x_i))^2] \leq E_D[(f(x) - r(x))^2] - \alpha^2$$

$P()$ can only reduce the loss. QED.
Conclusions and open problems

• Cannot learn much from looking only at disagreement/correlation
• Can evolve robustly with quadratic loss most of PAC learnable classes
• Characterize (strong) CSQ learning
 o Strengthen the lower bound to constant accuracy
• Monotone evolvability of other SQ learnable concept classes
 o Decision lists
 o General LTFs
• Proper evolvability: use only LTFs as representations