Dengue surveillance based on a computational model of spatio-temporal locality of Twitter

Janaína Gomide

Adriano Veloso
Virgílio Almeida
Wagner Meira Jr.
Fernanda Ferraz
Fabrício Benevenuto
Mauro Teixeira

1 Computer Science Department
UFMG - Brazil
2 Computer Science Department
UFOP - Brazil
3 Biochemistry and Immunology Department
UFMG - Brazil
Motivation

- Twitter is a unique social media channel, in the sense that users discuss and talk about the most diverse topics, including their health conditions.
- Traditional disease surveillance comprises a set of epidemiological procedures that monitor the spread of a disease and determine how it is spreading.
- Social media channels, such as Twitter, offer a continuous source of epidemic information, arming public health agencies with the ability to perform real-time surveillance.
Background on dengue

- Dengue is a mosquito-borne infection that causes a severe flu-like illness, and sometimes a potentially lethal complication.
- Outbreaks tend to occur every year during the rainy season but there is large variation of the degree of the epidemic in areas with similar rainfall.
- Current strategies for prediction of dengue disease are based on surveillance of insects, which provide only a rough estimate of cases.
- Once disease outbreaks are detected in a certain area, efforts need to be concentrated to avoid further cases and to optimize treatment and staff - number of cases can reach several hundred thousands.
- In Brazil, where there is a functional disease reporting system, detection of important outbreaks may take a few weeks, leading to loss of precious time to tackle the epidemic.
Goal

- Our work aims at using the user generated content available on online social media to predict a real-world event. The event we are interested is the dengue outbreaks.

- In this paper, we analyze how dengue epidemics are reflected on Twitter and to what extent that information can be used for surveillance.

- We then introduce an active surveillance framework that analyzes how social media reflects epidemics based on a combination of four dimensions: volume, location, time, and public perception.
Contributions

In summary, this work has the following contributions:

- Proposal and application of a four-dimensional framework for assessing the use of social media data in active surveillance.
- Proposal, implementation, and evaluation of an active surveillance system.
- Instantiation of both the framework and the surveillance system for dengue.
Datasets

We employ data collected from two different sources:

- **Official Dengue Reports**: Made available by the Brazilian Health Ministry, containing the number of dengue cases per city, notified between 2007 and 2010.

- **Twitter**: Messages mentioning the word “dengue”
 - From 2006 to July 2009: 27,658 tweets, out of which 90.27% are from 2009.
 - From December 2010 to April 2011: 465,444 tweets.
Methodology

We propose a methodology to perform active dengue surveillance based on a combination of the four dimensions that are associated with Twitter data:

- Public perception
- Volume
- Location
- Time

The methodology is divided into the following parts:

- Content analysis
- Correlation analysis
- Spatio-temporal analysis
- Surveillance
Content analysis

- Content analysis is employed in order to
 - provide important clues about the attitude associated with tweets mentioning dengue
 - reduce noisy for surveillance by focusing only on tweets that are related to dengue cases
- Classification techniques may be used to estimate sentiments expressed in tweets

Steps:
1. Specify the sentiment categories
2. Create a representative training dataset
3. Classify tweets
Content analysis

1 Specify the sentiment categories
 - Personal experience
 - Ironic/sarcastic tweets
 - Opinion
 - Resource
 - Marketing

2 Create a representative training dataset
 - A selective sampling strategy [J. Kivinen and H. Mannila PODS 1994] was carried in order to build a small, but representative training dataset

3 Classify tweets
 - An associative classifier (LAC) [A. Veloso et. al. ICDM 2006] produces a sentiment model, which is extracted from the training dataset
 - LAC provides a scoring function which estimates the likelihood of each sentiment being the implicit attitude of tweet
Content analysis

Sentiment distribution for Twitter datasets over time

Sentiment Distribution

% of total

Months

2010/12 2011/1 2011/2 2011/3 2011/4

Marketing
Resource
Opinion
Ironic/sarcastic
Personal Experience

Janaína Gomide (UFMG - Brazil)
Content analysis

Verify the discrepancy in the proportion of tweets expressing personal experience, coming from cities that actually showed different dengue incidence rates.
Correlation analysis

- The correlation analysis enables us to understand whether activity on Twitter indeed reflects dengue incidence in terms of number of tweets referring dengue.
- We fit a linear regression model that may approximate dengue incidence rates.
- Our models are based on one of the following variables:
 1. The volume of tweets related to dengue, posted by Brazilian users (\#tweets)
 2. The ratio of tweets expressing personal experience, posted by Brazilian users (PTPE)

Linear regression models:

\[
\text{\#cases}_t = \beta_0 + \beta_1 \times \text{\#tweets}_t + \beta_2 \times \text{\#tweets}_{t-1} + \epsilon \\
R^2 = 0.7829
\]

\[
\text{\#cases}_t = \beta_0 + \beta_1 \times \text{PTPE}_t + \beta_2 \times \text{PTPE}_{t-1} + \epsilon \\
R^2 = 0.9578
\]
Correlation analysis

- The correlation analysis enables us to understand whether activity on Twitter indeed reflects dengue incidence in terms of number of tweets referring dengue.
- We fit a linear regression model that may approximate dengue incidence rates.
- Our models are based on one of the following variables:
 1. The volume of tweets related to dengue, posted by Brazilian users (#tweets)
 2. The ratio of tweets expressing personal experience, posted by Brazilian users (PTPE)
- Linear regression models

\[\#cases_t = \beta_0 + \beta_1 \times \#tweets_t + \beta_2 \times \#tweets_{t-1} + \epsilon \]

\[\#cases_t = \beta_0 + \beta_1 \times PTPE_t + \beta_2 \times PTPE_{t-1} + \epsilon \]
Correlation analysis

- The correlation analysis enables us to understand whether activity on Twitter indeed reflects dengue incidence in terms of number of tweets referring to dengue.
- We fit a linear regression model that may approximate dengue incidence rates.
- Our models are based on one of the following variables:
 1. The volume of tweets related to dengue, posted by Brazilian users (#tweets)
 2. The ratio of tweets expressing personal experience, posted by Brazilian users (PTPE)

Linear regression models

\[
\#cases_t = \beta_0 + \beta_1 \times \#tweets_t + \beta_2 \times \#tweets_{t-1} + \epsilon \\
R^2 = 0.7829
\]

\[
\#cases_t = \beta_0 + \beta_1 \times PTPE_t + \beta_2 \times PTPE_{t-1} + \epsilon \\
R^2 = 0.9578
\]
Spatio-temporal analysis

- We are interested in discovering groups of cities that are near each other and have similar dengue incidence rates at a given point of time.
- This enables government agencies to concentrate efforts on critical locations in the right time.
- ST-DBSCAN is a density-based clustering algorithm and is used for clustering spatial-temporal data.

Steps:
1. Calculate the incidence rate associated with each city.
2. Determine the input parameters for ST-DBSCAN and run ST-DBSCAN.
Spatio-temporal analysis

- To calculate the incidence associated with each city rate we used
 - the volume of tweets
 - the PTPE value
Spatio-temporal analysis

To calculate the incidence associated with each city rate we used
- the volume of tweets $\text{Rand Index} = 0.8506$
- the PTPE value $\text{Rand Index} = 0.8914$
Spatio-temporal analysis

To calculate the incidence associated with each city rate we used:

- the volume of tweets \(\text{Rand Index} = 0.8506\)
- the PTPE value \(\text{Rand Index} = 0.8914\)
Surveillance

- We aim to analyze the proportion of tweets expressing personal experience in a weekly basis.
- The intuition is that, an abrupt increase on PTPE may indicate outbreaks in the corresponding cities.
- The visualization of surveillance system based on heat maps is able to capture variations on PTPE.
Surveillance

- Brazil is divided into 26 states, which are grouped into five regions: N, NE, MW, SE and S
- About 68% of dengue cases notified concentrated in 7 states which are all represented below
Conclusions

We show the potential of Twitter data for the sake of dengue surveillance.
We proposed a methodology based on four dimensions: volume, location, time and content.

- We speculate how users refer to dengue in Twitter with sentiment analysis and use the result to focus only on tweets that express personal experience about dengue.
- We constructed a highly correlated linear regression model for predicting the number of dengue cases using the proportion of tweets expressing personal experience.
- We showed that Twitter can be used to predict, spatially and temporally, dengue epidemics by means of clustering.
Thank you!

Janaína Gomide
janaina@dcc.ufmg.br

http://www.observatorio.inweb.org.br/dengue/