An Effective Approach to Realizing Planning Programs

Alfonso Gerevini†, Fabio Patrizi* and Alessandro Saetti†

†University of Brescia, Italy
{gerevini,saetti}@ing.unibs.it

*Imperial College London, UK
fpatrizi@imperial.ac.uk
Introduction

- **Planning programs (p-programs):** high-level, declarative representation of the behavior of agents acting in a domain [De Giacomo et al. AAMAS-2010]

- State transition systems labelled by domain goals and states representing decision points about which goal is next

- **Realizing a p-program:** finding and combining a collection of plans for the transition goals making the p-program executable

- The existing method for realizing a p-program is inefficient

- We propose a planning-based approach for deterministic domains that is considerable faster
Talk Outline

1. Planning program definition
2. Planning program realization
3. A planning-based algorithm
4. Experimental results
5. Conclusions and future work
Planning Programs (\(P\)-Programs)
Informally through an example

\(P\)-program: High-level, declarative representation of the behavior of an agent acting in a domain described by an automaton.
Planning Programs (P-Programs)

Informally through an example

P-program: High-level, declarative representation of the behavior of an agent acting in a domain described by an automaton

Example (Sale representative)

- On customer request, fly to WA (G_1) or BO (G_2)
- From BO and WA, required to return to NY (G_0)
- After returning, serve next (goal) request
Planning Programs

More formally

Consider a (deterministic) planning domain $\mathcal{D} = \langle P, A, \tau \rangle$, where:

- P: set of domain propositions
- A: set of domain actions
- $\tau: S \times A \rightarrow S$: state transition function

(Call $S = 2^P$ the set of \mathcal{D}-states)
Planning Programs

More formally

Consider a (deterministic) planning domain \(\mathcal{D} = \langle P, A, \tau \rangle \), where:

- \(P \): set of domain propositions
- \(A \): set of domain actions
- \(\tau : S \times A \rightarrow S \): state transition function

(Call \(S = 2^P \) the set of \(\mathcal{D} \)-states)

Definition (Planning Program for \(\mathcal{D} \))

A *Planning Program* for \(\mathcal{D} \) is a tuple \(\mathcal{P} = \langle V, v_0, \Gamma, \delta \rangle \), where:

- \(V \): (finite) set of \(\mathcal{P} \)-states
- \(v_0 \in V \): initial \(\mathcal{P} \)-state
- \(\Gamma \): set of possible goals in \(\mathcal{D} \)
- \(\delta : V \times \Gamma \rightarrow V \): \(p \)-program transition function
P-Program Realization
Informally

The execution of a p-program \mathcal{P} for \mathcal{D} works as follows:

1. Initially, \mathcal{D} and \mathcal{P} are in the joint state $\langle s_0, v_0 \rangle$
2. When \mathcal{D} and \mathcal{P} are in joint state $\langle s, v \rangle$, a v-outgoing transition $\langle v, G, v' \rangle$ is selected from the p-program (if any)
3. A plan π achieving G from s is executed, leading \mathcal{D} to s'
4. $\langle s', v' \rangle$ becomes the current joint state; a new iteration starts

Realizing a p-program (intuitively): building a plan for every transition selectable during the p-program execution in the current domain state

Remark: the transitions from joint states $\langle s', v \rangle$ and $\langle s'', v \rangle$ may require different plans if $s' \neq s''$
P-Program Realization

Example

Example (Sale representative, cont.)

Program realization function

<table>
<thead>
<tr>
<th>State</th>
<th>Transition</th>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_0 = {(at P1 NY), (at A1 Bo)})</td>
<td>(v_0, g_2, v_2)</td>
<td>(a_1, a_2, a_3, a_4)</td>
</tr>
<tr>
<td>(s_0 = {(at P1 NY), (at A1 Bo)})</td>
<td>(v_0, g_1, v_1)</td>
<td>(a_1, a_2, a_5, a_6)</td>
</tr>
<tr>
<td>(s_1 = {(at P1 Bo), (at A1 Bo)})</td>
<td>(v_2, g_0, v_0)</td>
<td>(a_7, a_1, a_8)</td>
</tr>
<tr>
<td>(s_2 = {(at P1 Wa), (at A1 Wa)})</td>
<td>(v_1, g_0, v_0)</td>
<td>(a_9, a_{10}, a_8)</td>
</tr>
<tr>
<td>(s_3 = {(at P1 NY), (at A1 NY)})</td>
<td>(v_0, g_2, v_2)</td>
<td>(a_2, a_3, a_4)</td>
</tr>
<tr>
<td>(s_3 = {(at P1 NY), (at A1 NY)})</td>
<td>(v_0, g_1, v_1)</td>
<td>(a_2, a_5, a_6)</td>
</tr>
</tbody>
</table>

D-actions:
- \(a_1 : (fly A1 Bo NY) \)
- \(a_2 : (board P1 A1 NY) \)
- \(a_3 : (fly A1 NY Bo) \)
- \(a_4 : (debark P1 A1 Bo) \)
- \(a_5 : (fly A1 NY Wa) \)
- \(a_6 : (debark P1 A1 Wa) \)
- \(a_7 : (board P1 A1 Bo) \)
- \(a_8 : (debark P1 A1 NY) \)
- \(a_9 : (board P1 A1 Wa) \)
- \(a_{10} : (fly A1 Wa NY) \)
More formally

For a planning domain \(\mathcal{D} = \langle P, A, \tau \rangle \):

- \(\Pi \): set of all plans executable from some \(\mathcal{D} \)-state
- \(s_0 \in S \): an initial \(\mathcal{D} \)-state

Definition (P-program Realization)

Given \(\mathcal{D} \) and \(\mathcal{P} = \langle \mathcal{V}, v_0, \Gamma, \delta \rangle \), a **realization** of \(P \) is a partial function \(\rho : S \times \delta \rightarrow \Pi \), inductively defined as follows:

- for every \(\mathcal{P} \)-transition \(\langle v_0, G, v \rangle \in \delta \), \(\rho(s_0, \langle v_0, G, v \rangle) \) is defined;
- if \(\rho(s, \langle v, G, v' \rangle) \) is defined then:
 - \(\pi = \rho(s, \langle v, G, v' \rangle) \) is a plan achieving \(G \) from \(s \)
 - \(\forall \langle v', G', v'' \rangle \in \delta \), if \(\text{Result}(s, \pi) = s' \), then \(\rho(s', \langle v', G', v'' \rangle) \) is defined.
Two proposed approaches:

- **Reduction to LTL-synthesis** [DeGiacomo&al@AAMAS10]
 - Pros: tools available (TLV); easy to handle non-deterministic domains as well
 - Cons: computationally inefficient

- **Planning-based approach** [*in this paper*]
 - Pros: can exploit fast planning technology and the problem structure to efficiently solve the realization problem
 - Cons: need dedicated algorithm; current algorithm supports only deterministic domains
A Planning-based Algorithm

Informally

1. \(\text{Open} = \text{set of joint (domain/program) states to process, initially set to } \langle s_0, v_0 \rangle\)

2. **Repeat**

3. Select a pair \(\langle s, v \rangle\) from \(\text{Open}\)

4. **Foreach** program transition \(d\) outgoing from \(v\) **do**

5. Construct a plan \(\pi\) achieving the goals of \(d\) from \(s\)

6. Update the realization function

7. Progress the program and world states possibly generating a new joint state to process (pair added to \(\text{Open}\))

8. **Until** \(\text{Open}\) is empty

Plans resulting in already generated domain states are **preferred**

(Preferred states are handled by soft goals compiled into PDDL2.1)
A planning-based algorithm
An example (part 1 of 4)

Program realization function under construction

<table>
<thead>
<tr>
<th>State</th>
<th>Transition</th>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_0 = { (\text{at P1 NY}), (\text{at A1 Bo}) })</td>
<td>(\langle v_0, G_2, v_2 \rangle)</td>
<td>?</td>
</tr>
<tr>
<td>(s_0 = { (\text{at P1 NY}), (\text{at A1 Bo}) })</td>
<td>(\langle v_0, G_1, v_1 \rangle)</td>
<td>?</td>
</tr>
</tbody>
</table>

\(a_1 : \) (fly A1 Bo NY)
\(a_2 : \) (board P1 A1 NY)
\(a_3 : \) (fly A1 NY Bo)
\(a_4 : \) (debark P1 A1 Bo)
\(a_5 : \) (fly A1 NY Wa)
\(a_6 : \) (debark P1 A1 Wa)
\(a_7 : \) (board P1 A1 Bo)
\(a_8 : \) (debark P1 A1 NY)
\(a_9 : \) (board P1 A1 Wa)
\(a_{10} : \) (fly A1 Wa NY)
A planning-based algorithm
An example (part 1 of 4)

Program realization function under construction

<table>
<thead>
<tr>
<th>State</th>
<th>Transition</th>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_0) = {(at P1 NY), (at A1 Bo)}</td>
<td>(\langle v_0, G_2, v_2 \rangle)</td>
<td>(\langle a_1, a_2, a_3, a_4 \rangle)</td>
</tr>
<tr>
<td>(s_0) = {(at P1 NY), (at A1 Bo)}</td>
<td>(\langle v_0, G_1, v_1 \rangle)</td>
<td>(\langle a_1, a_2, a_5, a_6 \rangle)</td>
</tr>
</tbody>
</table>

Constructing plans for \(G_1 \) and \(G_2 \) from \(s_0 \)
A planning-based algorithm

An example (part 1 of 4)

Program realization function under construction

<table>
<thead>
<tr>
<th>State</th>
<th>Transition</th>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>s₀ = {(at P1 NY), (at A1 Bo)}</td>
<td>⟨v₀, G₂, v₂⟩</td>
<td>⟨a₁, a₂, a₃, a₄⟩</td>
</tr>
<tr>
<td>s₀ = {(at P1 NY), (at A1 Bo)}</td>
<td>⟨v₀, G₁, v₁⟩</td>
<td>⟨a₁, a₂, a₅, a₆⟩</td>
</tr>
<tr>
<td>s₁ = {(at P1 Bo), (at A1 Bo)}</td>
<td>⟨v₂, G₀, v₀⟩</td>
<td>?</td>
</tr>
<tr>
<td>s₂ = {(at P1 Wa), (at A1 Wa)}</td>
<td>⟨v₁, G₀, v₀⟩</td>
<td>?</td>
</tr>
</tbody>
</table>

The computed plans produce two new final states

s₁ for v₁ and s₂ for v₂
A planning-based algorithm

An example (part 2 of 4)

\begin{align*}
G_0: \{ (\text{at P1 NY}) \} \\
G_2: \{ (\text{at P1 BO}) \} \\
G_1: \{ (\text{at P1 WA}) \} \\
G_0: \{ (\text{at P1 NY}) \}
\end{align*}

Open = \{ \langle s_1, v_1 \rangle, \langle s_2, v_2 \rangle \}

State(v_0) = \{ s_0 \}

State(v_1) = \{ s_1 \}

State(v_2) = \{ s_2 \}

Program realization function under construction

\begin{equation}
\begin{array}{|c|c|c|}
\hline
\text{State} & \text{Transition} & \text{Plan} \\
\hline
s_0 = \{ (\text{at P1 NY}), (\text{at A1 Bo}) \} & \langle v_0, G_2, v_2 \rangle & \langle a_1, a_2, a_3, a_4 \rangle \\
\hline
s_0 = \{ (\text{at P1 NY}), (\text{at A1 Bo}) \} & \langle v_0, G_1, v_1 \rangle & \langle a_1, a_2, a_5, a_6 \rangle \\
\hline
s_1 = \{ (\text{at P1 Bo}), (\text{at A1 Bo}) \} & \langle v_2, G_0, v_0 \rangle & ? \\
\hline
s_2 = \{ (\text{at P1 Wa}), (\text{at A1 Wa}) \} & \langle v_1, G_0, v_0 \rangle & ? \\
\hline
\end{array}
\end{equation}

\begin{align*}
a_1 : & (\text{fly A1 Bo NY}) \\
a_2 : & (\text{board P1 A1 NY}) \\
a_3 : & (\text{fly A1 NY Bo}) \\
a_4 : & (\text{debark P1 A1 Bo}) \\
a_5 : & (\text{fly A1 NY Wa}) \\
a_6 : & (\text{debark P1 A1 Wa}) \\
a_7 : & (\text{board P1 A1 Wa}) \\
a_8 : & (\text{debark P1 A1 NY}) \\
a_9 : & (\text{board P1 A1 Wa}) \\
a_{10} : & (\text{fly A1 Wa NY})
\end{align*}
A planning-based algorithm
An example (part 2 of 4)

A planning-based algorithm
An example (part 2 of 4)

G₀: {at P1 NY}
G₁: {at P1 WA}
G₂: {at P1 BO}
G₀: {at P1 NY}

v₀

v₁

v₂

Open = { ⟨s₂, v₂⟩ }
State(v₀) = {s₀}
State(v₁) = {s₁}
State(v₂) = {s₂}

Constructing a plan for 𝐺₀ preferring end state 𝑠₀

<table>
<thead>
<tr>
<th>State</th>
<th>Transition</th>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>s₀ = {at P1 NY, (at A1 Bo)}</td>
<td>⟨v₀, G₂, v₂⟩</td>
<td>⟨a₁, a₂, a₃, a₄⟩</td>
</tr>
<tr>
<td>s₀ = {at P1 NY, (at A1 Bo)}</td>
<td>⟨v₀, G₁, v₁⟩</td>
<td>⟨a₁, a₂, a₅, a₆⟩</td>
</tr>
<tr>
<td>s₁ = {at P1 Bo, (at A1 Bo)}</td>
<td>⟨v₂, G₀, v₀⟩</td>
<td>⟨a₇, a₁, a₈⟩</td>
</tr>
<tr>
<td>s₂ = {at P1 Wa, (at A1 Wa)}</td>
<td>⟨v₁, G₀, v₀⟩</td>
<td></td>
</tr>
</tbody>
</table>

a₁: (fly A1 Bo NY)
a₂: (board P1 A1 NY)
a₃: (fly A1 NY Bo)
a₄: (debark P1 A1 Bo)
a₅: (fly A1 NY Wa)
a₆: (debark P1 A1 Wa)
a₇: (board P1 A1 Wa)
a₈: (debark P1 A1 NY)
a₉: (board P1 A1 Wa)
a₁₀: (fly A1 Wa NY)
A planning-based algorithm
An example (part 2 of 4)

![Graph diagram](image)

Program realization function under construction

<table>
<thead>
<tr>
<th>State</th>
<th>Transition</th>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_0) = {(at P1 NY), (at A1 Bo)}</td>
<td>(v_0, G_2, v_2)</td>
<td>(a_1, a_2, a_3, a_4)</td>
</tr>
<tr>
<td>(s_0) = {(at P1 NY), (at A1 Bo)}</td>
<td>(v_0, G_1, v_1)</td>
<td>(a_1, a_2, a_5, a_6)</td>
</tr>
<tr>
<td>(s_1) = {(at P1 Bo), (at A1 Bo)}</td>
<td>(v_2, G_0, v_0)</td>
<td>(a_7, a_1, a_8)</td>
</tr>
<tr>
<td>(s_2) = {(at P1 Wa), (at A1 Wa)}</td>
<td>(v_1, G_0, v_0)</td>
<td>?</td>
</tr>
<tr>
<td>(s_3) = {(at P1 NY), (at A1 NY)}</td>
<td>(v_0, G_2, v_2)</td>
<td>?</td>
</tr>
<tr>
<td>(s_3) = {(at P1 NY), (at A1 NY)}</td>
<td>(v_0, G_1, v_1)</td>
<td>?</td>
</tr>
</tbody>
</table>

Open = \{ \langle s_2, v_2 \rangle, \langle s_3, v_0 \rangle \}

State(\(v_0\)) = \{ s_0, s_3 \}

State(\(v_1\)) = \{ s_1 \}

State(\(v_2\)) = \{ s_2 \}

Actions

- \(a_1\): (fly A1 Bo NY)
- \(a_2\): (board P1 A1 NY)
- \(a_3\): (fly A1 NY Bo)
- \(a_4\): (debark P1 A1 Bo)
- \(a_5\): (fly A1 NY Wa)
- \(a_6\): (debark P1 A1 Wa)
- \(a_7\): (board P1 A1 Bo)
- \(a_8\): (debark P1 A1 NY)
- \(a_9\): (board P1 A1 Wa)
- \(a_{10}\): (fly A1 Wa NY)

The computed plan produces a new final states \(s_3\) for \(v_0\)
A planning-based algorithm
An example (part 3 of 4)

Program realization function under construction

<table>
<thead>
<tr>
<th>State</th>
<th>Transition</th>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_0 = {(at \ P1 \ NY), (at \ A1 \ Bo)}$</td>
<td>$\langle v_0, G_2, v_2 \rangle$</td>
<td>$\langle a_1, a_2, a_3, a_4 \rangle$</td>
</tr>
<tr>
<td>$s_0 = {(at \ P1 \ NY), (at \ A1 \ Bo)}$</td>
<td>$\langle v_0, G_1, v_1 \rangle$</td>
<td>$\langle a_1, a_2, a_5, a_6 \rangle$</td>
</tr>
<tr>
<td>$s_1 = {(at \ P1 \ Bo), (at \ A1 \ Bo)}$</td>
<td>$\langle v_2, G_0, v_0 \rangle$</td>
<td>$\langle a_7, a_1, a_8 \rangle$</td>
</tr>
<tr>
<td>$s_2 = {(at \ P1 \ Wa), (at \ A1 \ Wa)}$</td>
<td>$\langle v_1, G_0, v_0 \rangle$</td>
<td>$? \langle a_7, a_1, a_8 \rangle$</td>
</tr>
<tr>
<td>$s_3 = {(at \ P1 \ NY), (at \ A1 \ NY)}$</td>
<td>$\langle v_0, G_2, v_2 \rangle$</td>
<td>$? \langle a_7, a_1, a_8 \rangle$</td>
</tr>
<tr>
<td>$s_3 = {(at \ P1 \ NY), (at \ A1 \ NY)}$</td>
<td>$\langle v_0, G_1, v_1 \rangle$</td>
<td>$? \langle a_7, a_1, a_8 \rangle$</td>
</tr>
</tbody>
</table>

$Open = \{\langle s_2, v_2 \rangle, \langle s_3, v_0 \rangle\}$

$State(v_0) = \{s_0, s_3\}$

$State(v_1) = \{s_1\}$

$State(v_2) = \{s_2\}$

$a_1 : (fly \ A1 \ Bo \ NY)$

$a_2 : (board \ P1 \ A1 \ NY)$

$a_3 : (fly \ A1 \ NY \ Bo)$

$a_4 : (debark \ P1 \ A1 \ Bo)$

$a_5 : (fly \ A1 \ NY \ Wa)$

$a_6 : (debark \ P1 \ A1 \ Wa)$

$a_7 : (board \ P1 \ A1 \ Wa)$

$a_8 : (debark \ P1 \ A1 \ NY)$

$a_9 : (board \ P1 \ A1 \ Wa)$

$a_{10} : (fly \ A1 \ Wa \ NY)$
A planning-based algorithm
An example (part 3 of 4)

Program realization function under construction

<table>
<thead>
<tr>
<th>State</th>
<th>Transition</th>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>s₀ = {(at P1 NY), (at A1 Bo)}</td>
<td>v₀, G₂, v₂</td>
<td>{a₁, a₂, a₃, a₄}</td>
</tr>
<tr>
<td>s₀ = {(at P1 NY), (at A1 Bo)}</td>
<td>v₀, G₁, v₁</td>
<td>{a₁, a₂, a₅, a₆}</td>
</tr>
<tr>
<td>s₁ = {(at P1 Bo), (at A1 Bo)}</td>
<td>v₂, G₀, v₀</td>
<td>{a₇, a₁, a₈}</td>
</tr>
<tr>
<td>s₂ = {(at P1 Wa), (at A1 Wa)}</td>
<td>v₁, G₀, v₀</td>
<td>{a₉, a₁₀, a₈}</td>
</tr>
<tr>
<td>s₃ = {(at P1 NY), (at A1 NY)}</td>
<td>v₀, G₂, v₂</td>
<td>?</td>
</tr>
<tr>
<td>s₃ = {(at P1 NY), (at A1 NY)}</td>
<td>v₀, G₁, v₁</td>
<td>?</td>
</tr>
</tbody>
</table>

Constructing a plan for G₀ preferring end states s₀ or s₃

\[\text{Open} = \{ \langle s₃, v₀ \rangle \} \]

\[\text{State}(v₀) = \{s₀, s₃\} \]

\[\text{State}(v₁) = \{s₁\} \]

\[\text{State}(v₂) = \{s₂\} \]

a₁ : (fly A1 Bo NY)
a₂ : (board P1 A1 NY)
a₃ : (fly A1 NY Bo)
a₄ : (debark P1 A1 Bo)
a₅ : (fly A1 NY Wa)
a₆ : (debark P1 A1 Wa)
a₇ : (board P1 A1 Bo)
a₈ : (debark P1 A1 NY)
a₉ : (board P1 A1 Wa)
a₁₀ : (fly A1 Wa NY)
A planning-based algorithm
An example (part 3 of 4)

Program realization function under construction

<table>
<thead>
<tr>
<th>State</th>
<th>Transition</th>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_0 = {\text{at P1 NY}, \text{at A1 Bo}})</td>
<td>(\langle v_0, G_2, v_2 \rangle)</td>
<td>(\langle a_1, a_2, a_3, a_4 \rangle)</td>
</tr>
<tr>
<td>(s_0 = {\text{at P1 NY}, \text{at A1 Bo}})</td>
<td>(\langle v_0, G_1, v_1 \rangle)</td>
<td>(\langle a_1, a_2, a_5, a_6 \rangle)</td>
</tr>
<tr>
<td>(s_1 = {\text{at P1 Bo}, \text{at A1 Bo}})</td>
<td>(\langle v_2, G_0, v_0 \rangle)</td>
<td>(\langle a_7, a_1, a_8 \rangle)</td>
</tr>
<tr>
<td>(s_2 = {\text{at P1 Wa}, \text{at A1 Wa}})</td>
<td>(\langle v_1, G_0, v_0 \rangle)</td>
<td>(\langle a_9, a_{10}, a_8 \rangle)</td>
</tr>
<tr>
<td>(s_3 = {\text{at P1 NY}, \text{at A1 NY}})</td>
<td>(\langle v_0, G_2, v_2 \rangle)</td>
<td>?</td>
</tr>
<tr>
<td>(s_3 = {\text{at P1 NY}, \text{at A1 NY}})</td>
<td>(\langle v_0, G_1, v_1 \rangle)</td>
<td>?</td>
</tr>
</tbody>
</table>

The computed plan produces the preferred final state \(s_3 \in \text{State}(v_0) \)
A planning-based algorithm
An example (part 4 of 4)

Program realization function under construction

<table>
<thead>
<tr>
<th>State</th>
<th>Transition</th>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_0 = {(\text{at P1 NY}), (\text{at A1 Bo})}$</td>
<td>v_0, G_2, v_2</td>
<td>a_1, a_2, a_3, a_4</td>
</tr>
<tr>
<td>$s_0 = {(\text{at P1 NY}), (\text{at A1 Bo})}$</td>
<td>v_0, G_1, v_1</td>
<td>a_1, a_2, a_5, a_6</td>
</tr>
<tr>
<td>$s_1 = {(\text{at P1 Bo}), (\text{at A1 Bo})}$</td>
<td>v_2, G_0, v_0</td>
<td>a_7, a_1, a_8</td>
</tr>
<tr>
<td>$s_2 = {(\text{at P1 Wa}), (\text{at A1 Wa})}$</td>
<td>v_1, G_0, v_0</td>
<td>a_9, a_{10}, a_8</td>
</tr>
<tr>
<td>$s_3 = {(\text{at P1 NY}), (\text{at A1 NY})}$</td>
<td>v_0, G_2, v_2</td>
<td>?</td>
</tr>
<tr>
<td>$s_3 = {(\text{at P1 NY}), (\text{at A1 NY})}$</td>
<td>v_0, G_1, v_1</td>
<td>?</td>
</tr>
</tbody>
</table>
A planning-based algorithm
An example (part 4 of 4)

Program realization function under construction

<table>
<thead>
<tr>
<th>State</th>
<th>Transition</th>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_0 = {(\text{at P1 NY}), (\text{at A1 Bo})}$</td>
<td>$\langle v_0, G_2, v_2 \rangle$</td>
<td>$\langle a_1, a_2, a_3, a_4 \rangle$</td>
</tr>
<tr>
<td>$s_0 = {(\text{at P1 NY}), (\text{at A1 Bo})}$</td>
<td>$\langle v_0, G_1, v_1 \rangle$</td>
<td>$\langle a_1, a_2, a_5, a_6 \rangle$</td>
</tr>
<tr>
<td>$s_1 = {(\text{at P1 Bo}), (\text{at A1 Bo})}$</td>
<td>$\langle v_2, G_0, v_0 \rangle$</td>
<td>$\langle a_7, a_1, a_8 \rangle$</td>
</tr>
<tr>
<td>$s_2 = {(\text{at P1 Wa}), (\text{at A1 Wa})}$</td>
<td>$\langle v_1, G_0, v_0 \rangle$</td>
<td>$\langle a_9, a_{10}, a_8 \rangle$</td>
</tr>
<tr>
<td>$s_3 = {(\text{at P1 NY}), (\text{at A1 NY})}$</td>
<td>$\langle v_0, G_2, v_2 \rangle$</td>
<td>$\langle a_2, a_3, a_4 \rangle$</td>
</tr>
<tr>
<td>$s_3 = {(\text{at P1 NY}), (\text{at A1 NY})}$</td>
<td>$\langle v_0, G_1, v_1 \rangle$</td>
<td>$\langle a_2, a_5, a_6 \rangle$</td>
</tr>
</tbody>
</table>

Constructing plans for G_1 and G_2 preferring end states s_1 and s_2
A planning-based algorithm
An example (part 4 of 4)

Program realization function under construction

<table>
<thead>
<tr>
<th>State</th>
<th>Transition</th>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_0 = {(at\ P1\ NY),\ (at\ A1\ Bo)}$</td>
<td>$\langle v_0, G_2, v_2 \rangle$</td>
<td>$\langle a_1, a_2, a_3, a_4 \rangle$</td>
</tr>
<tr>
<td>$s_0 = {(at\ P1\ NY),\ (at\ A1\ Bo)}$</td>
<td>$\langle v_0, G_1, v_1 \rangle$</td>
<td>$\langle a_1, a_2, a_5, a_6 \rangle$</td>
</tr>
<tr>
<td>$s_1 = {(at\ P1\ Bo),\ (at\ A1\ Bo)}$</td>
<td>$\langle v_2, G_0, v_0 \rangle$</td>
<td>$\langle a_7, a_1, a_8 \rangle$</td>
</tr>
<tr>
<td>$s_2 = {(at\ P1\ Wa),\ (at\ A1\ Wa)}$</td>
<td>$\langle v_1, G_0, v_0 \rangle$</td>
<td>$\langle a_9, a_{10}, a_8 \rangle$</td>
</tr>
<tr>
<td>$s_3 = {(at\ P1\ NY),\ (at\ A1\ NY)}$</td>
<td>$\langle v_0, G_2, v_2 \rangle$</td>
<td>$\langle a_2, a_3, a_4 \rangle$</td>
</tr>
<tr>
<td>$s_3 = {(at\ P1\ NY),\ (at\ A1\ NY)}$</td>
<td>$\langle v_0, G_1, v_1 \rangle$</td>
<td>$\langle a_2, a_5, a_6 \rangle$</td>
</tr>
</tbody>
</table>

The constructed plans produce the preferred final states s_1 and s_2 that are already in $State(v_1)$ and $State(v_2)$, respectively.
A planning-based algorithm

Backtracking

If for a pair $\langle s, v \rangle$ and a transition outgoing from v no realizing plan can be computed from s:

- State s is added to $Tabu(v) \Rightarrow s$ cannot be re-generated for v
- State s is removed from $State(v)$
- The realization function is updated (all plans generating s for the p-transitions ending in v are removed)
- $Open$ is updated with the new frontier of the realization function

$\forall s \in Tabu(v)$ plans realizing a transition to v cannot end in s anymore

(compiled into a revised planning problem – new dummy goals and actions)
Experimental Results
Realizing planning programs by planning and formal synthesis

Planning programs with 5–100 program states forming a single cycle in Blocksworld with 2 blocks. CPU-time limit: 30 minutes

Planner: LPG
Experimental Results
Realizing planning program by planning with and without using preferences

Planning programs with 4 program states forming a sequence of multiple binary cycles in Blocksworld with 5–24 blocks. Similar results with other domains and program structures.
Conclusions

- We have proposed a new planning-based method for realizing p-programs over deterministic domains.

- The approach is parametric wrt the planner realizing the transitions (much better if soft goals are supported).

- Experimental results show:
 - Dramatic performance improvement wrt the previous technique based on LTL synthesis.
 - The use of preferred states is very effective to deal with (possibly undirected) cycles in the planning program.
Future Work

- Performance comparison of other algorithm versions obtained using different planners
- Additional experiments with other domains and planning program structures
- Integration of plan-adaptation techniques when (re)planning for a program transition
- Plan-based method handling non-deterministic domains
Encoding a preferred state into PDDL2.1

- Two new dummy literals (dummy-fact) and (dummy-goal):
 - (dummy-fact) is added to the initial state and the domain action preconditions
 - (dummy-goal) is added to the problem goals
- A new numerical fluent (utility) that initially is 0
- A new dummy action nopref with (dummy-fact) as precondition and negative effect, and with (dummy-goal) as positive effect
- For every preferred state s, a new dummy action pref-s similar to nopref but with
 - the set of literals in s as additional preconditions, and
 - a numerical effect increasing fluent (utility) by a positive value
- A plan metric function maximizing (utility)
Experimental Results

Realizing planning program by planning with and without using preferences

Planning program Structure		IPC6 score (#solved)		Average #open pairs	
		+pref.	−pref.		
1C[50]	Blocksworld	20 (20)	4.81 (20)	51.2	164
SC[26]		20 (20)	0.29 (2)	92.0	695
CD[8]		20 (20)	1.0 (4)	245	627
1C[50]	Storage	20 (20)	6.13 (20)	51.4	107
SC[26]		20 (20)	0.17 (2)	81.7	2934
CD[8]		20 (20)	0.80 (4)	228.5	3081
1C[50]	Zenotravel	20 (20)	6.81 (20)	51.3	63.7
SC[26]		20 (20)	1.31 (7)	88.5	2454
CD[8]		20 (20)	0.0 (0)	281	3040

1C: one cycle; **SC**: chain of binary cycles; **CD**: complete directed graph

[n]: n p-program states
A number of previous works address related issues:

1. (Baier & McIlraith @ ICAPS 2006): heuristic search to build *finite* plans that satisfy temporally extended goals
 - plan finiteness does not allow to capture cycles in p-programs

2. (Kabanza & Thiebaux @ ICAPS 2005): deals with temporally extended goals over infinite, deterministic (cyclic) *linear* plans
 - we need some form of non-determinism to capture the arbitrary selection of p-program transitions

3. (Kuter & al @ ICAPS 2008): use of classical planners to find strong-cyclic reachability solutions to conditional planning problems

None can be straightforwardly used to compute a p-program realization (≠ goal reachability!)
(DeGiacomo&al@ICAPS10) propose a more general setting, where:

- the planning domain $D = \{P, A, \rho\}$ is nondeterministic:
 - State transition $\tau \subseteq S \times A \times S$ is a relation instead of a function

- the transitions $\langle v, \varphi, G, v' \rangle \in \delta$ of a p-program $\mathcal{P} = \langle V, v_0, \Gamma, \delta \rangle$ may include also a maintenance goal:
 - φ represents a condition to be satisfied during plan execution, until G is achieved
 - this allows for capturing persistent goal requirements
The General Setting

Realization

The notion of realization needs to account for the facts that:

- plans are conditional
- maintenance goals must be satisfied

Definition (P-program Realization, general)

Given D and $P = \langle V, v_0, \Gamma, \delta \rangle$, a realization of P is a partial function $\rho : S \times \delta \rightarrow \Pi$, inductively defined as follows:

- for every P-transition $\langle v_0, \varphi, G, v' \rangle \in \delta$, $\rho(s_0, \langle v_0, \varphi, G, v' \rangle)$ is defined;
- if $\rho(s, \langle v, \varphi, G, v' \rangle)$ is defined then:
 - $\pi = \rho(s, \langle v, \varphi, G, v' \rangle)$ is a conditional plan achieving G from s
 - all states reachable by executing π from s satisfy φ
 - for every $\langle v', \varphi, G', v'' \rangle \in \delta$, and for all s' s.t. $\text{Result}(s, \pi) = s'$, $\rho(s', \langle v', \varphi, G', v'' \rangle)$ is defined.
The General Setting

Complexity

Theorem

Building a p-program realization over a nondeterministic planning domain is an EXPTIME-complete problem.