A Complete Algorithm for Generating Landmarks

Blai Bonet Julio Castillo

Universidad Simón Bolívar, Caracas, Venezuela

ICAPS 2011 – Freiburg, June 2011
Introduction

- multiple uses of landmarks in planning
- most powerful admissible heuristics are based on landmarks
- we know . . .
 - a lot about exploiting landmarks
 - little about generation of landmarks
- this work is about generation of landmarks
Our contribution

- principled algorithm for generating landmarks
- landmarks can be used for different purposes
- a general framework for heuristics based on landmarks:
 - admissible for optimal planning
 - non-admissible for satisfacing planning
- polytime admissible heuristic
Relaxed Planning
Obtained by removing the deletes of each action

Relaxed task characterized by:

- finite set F of facts
- initial facts $I \subseteq F$
- goal facts $G \subseteq F$ that must be reached
- operators of the form $o[4] : a, b \rightarrow c, d$

read: If we already have facts a and b (preconditions $\text{pre}(o)$), we can apply o, paying 4 units (cost $\text{cost}(o)$), to obtain facts c and d (effects $\text{eff}(o)$)

Assume WLOG: $I = \{i\}$, $G = \{g\}$, all $\text{pre}(o) \neq \emptyset$
One way to reach goal $G = \{g\}$ from $I = \{i\}$:

- apply sequence o_1, o_2, o_4, o_5 (plan)

- cost: $3 + 4 + 1 + 1 = 9$ (optimal)
Optimal Relaxed Cost

- h^+: minimal total cost to reach G from I
- **Very good heuristic** function for optimal planning
- **NP-hard** to compute or approximate by constant factor
Landmarks
Most accurate admissible heuristics are based on landmarks

Def: a (disjunctive action) **landmark** is a set of operators L such that each plan must contain some action in L
Example

\(o_1[3] : i \rightarrow a, b \)
\(o_2[4] : i \rightarrow a, c \)
\(o_3[5] : i \rightarrow b, c \)
\(o_4[1] : a, b \rightarrow d \)
\(o_5[1] : a, d, c \rightarrow g \)

Some landmarks:

- need \(g \): \(W = \{o_5\} \) (hence \(h^+ \geq 1 \))
- need \(a \): \(X = \{o_1, o_2\} \) (hence \(h^+ \geq 3 \))
- need \(c \): \(Y = \{o_2, o_3\} \) (hence \(h^+ \geq 4 \))
- need \(d \): \(Z = \{o_4\} \) (hence \(h^+ \geq 1 \))
- ...
Exploiting Landmarks: Hitting Sets

Given:

- finite set A
- collection \mathcal{F} of subsets from A
- non-negative costs $c : A \rightarrow \mathbb{R}_0^+$

Hitting set:

- subset $H \subseteq A$ that hits every $S \in \mathcal{F}$ (i.e. $S \cap H \neq \emptyset$)
- cost of $H = \sum_{a \in H} c(a)$

Minimum-cost Hitting Set (MHS):

- minimizes cost
- classical NP-complete problem
Can view collection of landmarks as instance of MHS problem

Example (Landmarks)

\[A = \{o_1, o_2, o_3, o_4, o_5\} \]

\[\mathcal{F} = \{\{o_5\}, \{o_1, o_2\}, \{o_2, o_3\}, \{o_4\}\} \]

\[W \quad X \quad Y \quad Z \]

Costs: \[c(o_1) = 3, \quad c(o_2) = 4, \quad c(o_3) = 5, \quad c(o_4) = 1, \quad c(o_5) = 1 \]

Minimum hitting set: \[\{o_2, o_4, o_5\} \] with cost \[4 + 1 + 1 = 6 \]
Precondition choice function (pcf): function D that maps operators to preconditions

Justification graph for pcf D: arc-labeled digraph with:

- vertices: the facts F
- arcs: $D(o) \xrightarrow{o} e$ for each operator o and effect $e \in \text{eff}(o)$
pcf D: \[
\begin{array}{cccccc}
 & o & o_1 & o_2 & o_3 & o_4 & o_5 \\
 D(o) & i & i & i & a & a \\
\end{array}
\]

Landmark (cut): \{5\}:
- $\rightarrow a, b$
- $\rightarrow a, c$
- $\rightarrow b, c$
- $\rightarrow d$
- $\rightarrow a, c, d \rightarrow g$
\[
\begin{array}{c|cccccc}
\text{pcf } D: & o & o_1 & o_2 & o_3 & o_4 & o_5 \\
\hline
D(o) & i & i & i & a & a \\
\end{array}
\]

Landmark (cut): \(W = \{o_5\} \)

\(o_1[3]: i \rightarrow a, b \)
\(o_2[4]: i \rightarrow a, c \)
\(o_3[5]: i \rightarrow b, c \)
\(o_4[1]: a, b \rightarrow d \)
\(o_5[1]: a, c, d \rightarrow g \)
pcf D: \[
\begin{array}{c|cccccc}
D(o) & o & o_1 & o_2 & o_3 & o_4 & o_5 \\
\hline
D(o) & i & i & i & a & a
\end{array}
\]

Landmark (cut): $X = \{o_1, o_2\}$

- $o_1[3]: i \rightarrow a, b$
- $o_2[4]: i \rightarrow a, c$
- $o_3[5]: i \rightarrow b, c$
- $o_4[1]: a, b \rightarrow d$
- $o_5[1]: a, c, d \rightarrow g$
pcf D: \[
\begin{array}{c|cccc}
 o & o_1 & o_2 & o_3 & o_4 & o_5 \\
 i & i & i & i & a & d \\
\end{array}
\]

(new pcf)

Landmark (cut): $W = \{o_5\}$

\[o_1[3] : i \rightarrow a, b\]
\[o_2[4] : i \rightarrow a, c\]
\[o_3[5] : i \rightarrow b, c\]
\[o_4[1] : a, b \rightarrow d\]
\[o_5[1] : a, c, d \rightarrow g\]
pcf $D: \begin{array}{cccccc}
 o & o_1 & o_2 & o_3 & o_4 & o_5 \\
 D(o) & i & i & i & a & d
\end{array}$

Landmark (cut): $Z = \{o_4\}$

- $o_1[3]: i \rightarrow a, b$
- $o_2[4]: i \rightarrow a, c$
- $o_3[5]: i \rightarrow b, c$
- $o_4[1]: a, b \rightarrow d$
- $o_5[1]: a, c, d \rightarrow g$
\[\text{pcf } D: \begin{array}{c|cccccc} o & o_1 & o_2 & o_3 & o_4 & o_5 \\ \hline D(o) & i & i & i & a & d \end{array} \]

Landmark (cut): \(X = \{ o_1, o_2 \} \)

\[o_1[3] : i \rightarrow a, b \]
\[o_2[4] : i \rightarrow a, c \]
\[o_3[5] : i \rightarrow b, c \]
\[o_4[1] : a, b \rightarrow d \]
\[o_5[1] : a, c, d \rightarrow g \]
Thm (B. & Helmert, 2010): Let \mathcal{L} be all “cut landmarks”. Then, $h^+ = \text{cost of MHS for } \mathcal{L}$.
Thm (B. & Helmert, 2010): Let \mathcal{L} be all “cut landmarks”. Then, $h^+ = \text{cost of MHS for } \mathcal{L}$.

Impractical to generate all landmarks!

Do we need all of them to get h^+ or a good approximation?
Principled Generation of Landmarks
\(H = \) subset of operators

\(R = \) fluents reachable from \(I \) using only operators in \(H \)
\(H = \text{subset of operators} \)

\(R = \text{fluents reachable from } I \text{ using only operators in } H \)

\[g \in R \implies H \text{ “contains” a relaxed plan} \]

\[g \notin R \implies (R, R^c) \text{ is cut of some justification graph } G(D) \]

and \(H \text{ does not hit cutset}(R, R^c) \)
$H =$ subset of operators

$R =$ fluents reachable from I using only operators in H

$g \in R \implies H$ “contains” a relaxed plan

$g \notin R \implies (R, R^c)$ is cut of some justification graph $G(D)$

and H does not hit cutset(R, R^c)

Indeed, it’s enough to define pcf D as $D(o) = p$ where

$$
\begin{cases}
 p \in pre(o) & \text{if } pre(o) \subseteq R \\
 p \in pre(o) \setminus R & \text{if } pre(o) \not\subseteq R
\end{cases}
$$
For such pcf D,

$$L = \text{cutset}(R, R^c) = \{ o : D(o) \in R \text{ and } \text{eff}(o) \notin R^c \}$$

is landmark not hit by H!
For such pcf D,

$$L = \text{cutset}(R, R^c) = \{ o : D(o) \in R \text{ and } \text{eff}(o) \notin R^c \}$$

is landmark not hit by H!

L improved by removing from $G(D)$ facts irrelevant to g
Algorithm A

Input: subset H of actions

Output: YES if H contains plan, or landmark not hit by H

Method:

1. $R :=$ set of reachable fluents using actions in H
2. if $g \in H$ then return YES
3. compute pcf D and justification graph $G(D)$
4. simplify graph $G(D)$
5. return cutset of (R, R^c) in simplified graph

Time: linear with correct data structures!
Landmarks $= \emptyset$
Landmarks = \emptyset

\[H = \emptyset \ ; \ R = \{i\} \ ; \ R^c = \{a, b, c, d, g\} \ ; \ L = \{o_1, o_2\} \]
Landmarks = \{\{o_1, o_2\}\}

H = \{o_1\} ; R = \{i, a, b\} ; R^c = \{c, d, g\} ; L = \{o_4\}
Landmarks = \{ \{o_1, o_2\}, \{o_4\} \}

H = \{o_1, o_4\}; R = \{i, a, b, d\}; R^c = \{c, g\}; L = \{o_2, o_3\}
Landmarks = \{ \{ o_1, o_2 \}, \{ o_4 \}, \{ o_2, o_3 \} \} \\
X \quad Z \quad Y

H = \{ o_2, o_4 \} ;
R = \{ i, a, c \} ;
R^c = \{ b, g \} ;
L = \{ o_1, o_3 \}
Landmarks = \{\{o_1, o_2\}, \{o_4\}, \{o_2, o_3\}, \{o_1, o_3\}\} \\
\begin{align*}
\text{H} &= \{o_1, o_2, o_4\} ; \\
\text{R} &= \{i, a, b, c, d\} ; \\
\text{R}^c &= \{g\} ; \\
\text{L} &= \{o_5\}
\end{align*}
Landmarks = \{\{o_1, o_2\}, \{o_4\}, \{o_2, o_3\}, \{o_1, o_3\}, \{o_5\}\}\] \text{complete!}

H = \{o_1, o_2, o_4, o_5\}; \ R = \{i, a, b, c, d, g\}; \ R^c = \emptyset
Algorithm \(C1\)

Input: initial collection \(\mathcal{L}\) (maybe empty)

Output: a complete collection and \(h^+(I)\)

Method:

1. \(H := \text{min-cost hitting set for } \mathcal{L}\)
2. \(L := A(H)\)
3. if \(L = \text{YES}\) then return \(\mathcal{L}\) and cost of \(H\)
4. \(\mathcal{L} := \mathcal{L} \cup \{L\}\)
5. goto 2

Algorithm \(C1\) does not run in polytime because:

- computing min-cost hitting sets is \textbf{NP-hard}
- number of iterations may be \textbf{exponential}
Flaws can be **overcomed** to get a polytime approximation by:

- controlling number of iterations
- controlling difficulty of solving MHS problem

See paper for:

- details about algorithm $C1$ and variants $C2$ and $C3$
- how to use A to get heuristics for satisficing planning
- novel polytime admissible heuristics that dominate best-known heuristics (**in number of expanded nodes**)
 slower than state-of-the-art heuristics (i.e. LM-Cut)
Thanks!