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Introduction
High-dimensional data sets are everywhere:
@ social networks
computer vision
recommender systems and collaborative filtering

astronomy datasets

and so on....

Question:

Suppose that n = 100 and d = 1000. Do we expect theory requiring n — 400
and d = O(1) to be useful?

Modern viewpoint:

@ non-asymptotic results (valid for all (n,d))
o allow forn < dornx=xd

@ investigate various types of low-dimensional structure



(Nearly) low-rank matrices
U D VT

Matrix ©* € R%*42 with rank r < min{d;, ds}.
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Low-rank multitask regression

@ d, tasks in d; dimensions

@ unknown matrix ©* € R4 >4 of approximate rank r

o*

@*

Observations:
@ predictor matrix X € R"*%
@ output matrix ¥ € R"x%



Example: Collaborative filtering

1

Universe of d; individuals and ds films Observe n < djds ratings

(e.g., Srebro, Alon & Jaakkola, 2004)
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Example: Matrix decomposition

Unknown matrix M decomposed into sum:

M U D \%
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M = < + r*
~— ~—~
Low-rank component Sparse component

In collaborative filtering;:

@ low rank component ©* represents true user information

@ sparse component I'* represents adversarial noise

(Chandrasekaran, Sanghavi, Parillo & Willsky, 2009; Candes et al., 2010; Xu
et al., 2010; Hsu et al., 2010; Agarwal et al., 2011)



Example: Learning graphical models

Zero pattern of inverse covariance

1
P(x1,z2,...,24) X €xXp ( — §mTF*x).

Problems with hidden/latent variables lead to sparse/low-rank
decompositions.
(Chandrasekaran, Parillo & Willsky, 2010)



Example: Constrained system identification

Raw time series
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Sample paths of first-order time series in d = 100 dimensions.

X(t+1)=0"X{t)+W(t), t=1,2,...



Example: Constrained system identification

Unmixed time series
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State within a 3-dimensional subspace, remaining 97 dimensions of noise



Remainder of talk

© Matrix regression problems
» Regularization with nuclear norm
» Restricted strong convexity
» A general theorem

© Various examples
» Matrix sketching
» Matrix completion
» Matrix decomposition
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Matrix regression problems

For sample size n, define an observation operator X : R%1xdz — R™:

o = x(0%)
v ) ——
dy x dz matrix n-vector of observations

Operator X and output y € R"™ linked via noisy linear model:

y=X(07) 4+ w.
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Matrix regression problems

For sample size n, define an observation operator X : R%1xdz — R™:

o = x(0%)
v ) ——
dy x dz matrix n-vector of observations

Operator X and output y € R"™ linked via noisy linear model:

y=X(07) 4+ w.

Estimate unknown ©* by minimizing loss function

6 carg min  {£(65, %)+ AulOuc},

regularized with nuclear norm ||©|yuc = Z;n:iri{dl"dﬂ o;(0)

Least-squares loss is commonly used:
1
L(O;y,X) = —|ly — X(0)]l3.
(0:,%) = 5 lly ~ X(O)13
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Frob. norm MSE
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Noisy matrix completion (unrescaled)

MSE versus raw sample size (q = 0)
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Frob. norm MSE
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Noisy matrix completion (rescaled)

MSE versus rescaled sample size (q = 0)
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Strong convexity never holds

When n < dyds, the Hessian VL(O;y,X) = %%*f{ has nullspace of dimension
(dldg) —n.



Restricted strong convexity (RSC)

Definition (Negahban et al., 2009)

The operator X : R%1*d2 — R™ satisfies RSC (w.r.t. nuclear norm) with
curvature v > 0 and tolerance k > 0

X
IXONE 5 5 ) 01 — 5(2) [O]2ye  for all © € R,
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Restricted strong convexity (RSC)

Definition (Negahban et al., 2009)

The operator X : R%1*d2 — R™ satisfies RSC (w.r.t. nuclear norm) with
curvature v > 0 and tolerance k > 0

X
IXONE 5 5 ) 01 — 5(2) [O]2ye  for all © € R,

© Reduces to ordinary strong convexity if £ = 0, but this never holds when
n < dl d2.

© Guarantees that least-squares loss £(0) = 5-||y — X(0)|]3 is strongly
convex in a restricted sense.

© Generalizes to other loss functions and regularizers.

@ Substantially milder requirement than restricted isometry.
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General guarantee for regression with nuclear norm
Given y = X(0*) 4+ w, estimate ©* by solving the SDP:
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Conditions:
@ operator X satisfies RSC with curvature v(X) and tolerance x(X).

@ regularization parameter satisfies A\, > 2||X*(w)]|op/n-



General guarantee for regression with nuclear norm

Given y = X(0*) 4+ w, estimate ©* by solving the SDP:
1
{51y = XO)IE + \ulOlc}.

O € arg min
@ERdl X do

Conditions:
@ operator X satisfies RSC with curvature v(X) and tolerance x(X).
@ regularization parameter satisfies A\, > 2||X*(w)]|op/n-

min{d,d>}

Theorem (Negahban & W., 2009)
For any matriz ©* € R4*%  any solution O to the SDP satisfies the bound
An T .
+ > 0i(07) },

~ A
0-06"% 3 min - {
I I3 re{1,2,...,min{ds,d2}} Y(X) 7(%) Ko
—— j=r+1
Estim. error A P :
pprozimation error

where A\, = max{\,, x(X)}.




Example: Matrix completion
Random operator X : R**?4 — R” with

[}:(@*)]i = @Z(i)b(i) = <<Ea(i)b(i)v %),

where (a(i),b(7)) is a matrix index sampled u.a.r.

Even in noiseless setting, model is unidentifiable:
Consider a rank one matrix:

100 0
0 0 O 0
0 =eref = 0 0 0 0
o 0
0 0 0 0
Past work has imposed eigen-incoherence conditions. (Recht & Candes, 2008;

Chandrasekaran et al., 2009 Gross, 2009; Keshavan et al., 2009)
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A milder “spikiness” condition

Consider the “poisoned” low-rank matrix:

1 0 0 0
0 0 O 0
@*:1-«*_’_5616’{:1-\*_’_50 0 0 0
Dol 0
0 0 O 0

where I'* is rank 7 — 1, all eigenectors perpendicular to e;.

Excluded by eigen-incoherence for all § > 0.
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A milder “spikiness” condition

Consider the “poisoned” low-rank matrix:

1 0 0 0
0 0 O 0
@*:I‘*+5eleip:I‘*+50 0 0 0
Dol 0
0 0 O 0

where I'* is rank 7 — 1, all eigenectors perpendicular to e;.
Excluded by eigen-incoherence for all § > 0.

Control by spikiness ratio: (Negahban & W., 2010)

|07 [|oc
1< =% < g,
Ielr
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Noisy matrix completion (general /,-balls)

Suppose that ©* lies in the ¢,-ball:
)= {0 R Zm o< R}
Special case ¢ = 0 means ©* has rank r = Ry.

Corollary (Negahban & W., 2010)

If noise is zero-mean with v-sub-exponential tails, and ©* has spikiness at
most o, then

=)

18- 0" 3 RBy((v* v 1)()?

with high probability.
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Other work for exactly low rank matrices
In this special case, our result gives:

~ rdlog d
16 - ©"llr 3 max{v,a} /5.
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Other work for exactly low rank matrices
In this special case, our result gives:

~ N rdlogd
16 - ©"llr 3 max{v,a} /5.

Candes & Plan, 2009:
@ analyzed nuclear norm relaxation

@ under eigen-incoherence conditions with parameter u, sufficient for exact
recovery

@ based on extrapolation from exact recovery:

16 - 0l % v {va+ X'}

o for fixed noise variance v2, diverges as d — 4o00; also diverges as n — 400
for fixed d
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Other work for exactly low rank matrices

In this special case, our result gives:

~ N rdlogd
16 - ©"llr 3 max{v,a} /5.

Keshavan, Montanari & Oh, 2009:

@ analyzed alternative method based on trimmed SVD
@ established bound

~ rd
* *

16 —-©%llr T vur(©) 4/ —,

n
. . " . Tamax (©%)
@ bound grows with matrix condition number x(©*) = D)

min
@ eigen-incoherence conditions are imposed
Martin Wainwright (UC Berkeley) High-dimensional matrices April 2011
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Example: Noisy matrix decomposition

O r*

" u - ™
o m
n -.- L= |+
" .
" = .

Y =0+ + W
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Example: Noisy matrix decomposition

Y o*
" u - ™
™ m
_ n -'. LR
" .
" = .

Y =0+ + W

Method with two regularizers plus“spikiness” control on ©:
o ) 1 .
(6.5 € arg i { -1y = (© + T)IB + Aullhc + I 1}

@ Noiseless version: Chandrasekaran et al., 2009; Candes et al. 2010; Xu et al.,
2010.

@ Noisy version: Hu et al., 2010.
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Consequences for noisy matrix decomposition

Theorem (Agarwal, Negahban & W., 2011)

With appropriate choice of reqularization parameters (Ap, in,), the squared
Frob. error e2(©,T) of any SDP solution satisfies

dy + ds) k log(%d2) a2k

2 < 2 (7 (da 2 2 k . Y

© = ar < dids av dids (1d1d2
~——

Low-rank component  Sparse component  Unidentifiable component

with high probability.




Consequences for noisy matrix decomposition

Theorem (Agarwal, Negahban & W., 2011)

With appropriate choice of reqularization parameters (Ap, in,), the squared
Frob. error e2(©,T) of any SDP solution satisfies

dy + ds) k log(%d2) a2k

2 < 2 (7 (da 2 2 k . Y

e < qv ( 4, +cv iy 4 (1d1d2
N——

Low-rank component  Sparse component  Unidentifiable component

with high probability.

Intuition:
@ effective sample size n = dids
@ low-rank component has =~ r (d; + d2) degrees of freedom

@ sparse component has k& non-zeros hidden in d;ds, and hence

~ klog (%) degrees of freedom
o term o2 ﬁ is unavoidable due to unidentifiability



Minimax-optimality
@ minimax error over a matrix family:

M(F):= inf sup E[6 - O + T~ I3,
(6.F) (0°.I*)eF
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Minimax-optimality
@ minimax error over a matrix family:

M(F):= inf sup E[6 - O + T~ I3,
(6.F) (0°.I*)eF

@ low-rank plus sparse family

Qg
Fyp 1 =1 (0%, rank(©*) < r, |supp(I'™)| <k, [|0"|| < }
o ={(6, 1) | rank(©7) < 1y [supn(r)] < k. 6" < L
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Minimax-optimality
@ minimax error over a matrix family:

M(F) = inf sup E[]6 - 0% + T - T*|I2],
(6,T) (0*,I*)eF

@ low-rank plus sparse family

P ::{(@ar*) | xank(©) < 7, |supp(I)] <k, [0 o < e } |

Theorem (Agarwal, Negahban & W, 2011)

There is a universal constant co > 0 such that for all ag > 32/log(d1ds), we

have

dida—k
dy +dp)  Klog( "2 ) an
o1,y 00)) > e { T8 ddy’
M(Fep (1, K, aa)) > cov { ddy T didy O dvds

April 2011 24 / 27
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Summary

@ high-dimensional matrix problems occur in many settings

@ estimators based on nuclear norm and other convex matrix regularizers
are popular

@ a single theoretical result:
» provides guarantees for many models
» resulting bounds are minimax-optimal (over all algorithms) in many cases

Some references:
@ S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu (2009). A unified

framework for high-dimensional analysis of M-estimators with decomposable
regularizers, NIPS Conference.

@ S. Negahban and M. J. Wainwright (2009). Estimation rates of (near) low-rank
matrices with noise and high-dimensional scaling. arxiv.org/abs/0912.5100. To
appear in Annals of Statistics.

@ S. Negahban and M. J. Wainwright (2010). Restricted strong convexity and
(weighted) matrix completion: Optimal bounds with noise.
arxiv.org/abs/0112.5100, September 2010.



