Convex relaxation and high-dimensional matrices

Martin Wainwright

UC Berkeley Departments of Statistics, and EECS

Based on joint work with:

Alekh Agarwahl (UC Berkeley) Sahand Negahban (UC Berkeley) Pradeep Ravikumar (UT Austin) Bin Yu (UC Berkeley)

Introduction

High-dimensional data sets are everywhere:

- social networks
- computer vision
- recommender systems and collaborative filtering
- astronomy datasets
- and so on....

Introduction

High-dimensional data sets are everywhere:

- social networks
- computer vision
- recommender systems and collaborative filtering
- astronomy datasets
- and so on....

Question:

Suppose that n=100 and d=1000. Do we expect theory requiring $n\to +\infty$ and $d=\mathcal{O}(1)$ to be useful?

Introduction

High-dimensional data sets are everywhere:

- social networks
- computer vision
- recommender systems and collaborative filtering
- astronomy datasets
- and so on....

Question:

Suppose that n=100 and d=1000. Do we expect theory requiring $n\to +\infty$ and $d=\mathcal{O}(1)$ to be useful?

Modern viewpoint:

- \bullet non-asymptotic results (valid for all (n,d))
- allow for $n \ll d$ or $n \asymp d$
- investigate various types of low-dimensional structure

(Nearly) low-rank matrices

Matrix $\Theta^* \in \mathbb{R}^{d_1 \times d_2}$ with rank $r \ll \min\{d_1, d_2\}$.

Example: Multiview imaging

Low-rank multitask regression

- d_2 tasks in d_1 dimensions
- unknown matrix $\Theta^* \in \mathbb{R}^{d_1 \times d_2}$ of approximate rank r

Observations:

- predictor matrix $X \in \mathbb{R}^{n \times d_1}$
- output matrix $Y \in \mathbb{R}^{n \times d_2}$

Example: Collaborative filtering

Universe of d_1 individuals and d_2 films Observe $n \ll d_1 d_2$ ratings

(e.g., Srebro, Alon & Jaakkola, 2004)

Security and robustness issues

Spiritual guide

Break-down of Amazon recommendation system, 2002.

Security and robustness issues

Spiritual guide

Sex manual

Break-down of Amazon recommendation system, 2002.

Example: Matrix decomposition

Unknown matrix M decomposed into sum:

Low-rank component Sparse component

In collaborative filtering:

- low rank component Θ^* represents true user information
- sparse component Γ^* represents adversarial noise

(Chandrasekaran, Sanghavi, Parillo & Willsky, 2009; Candes et al., 2010; Xu et al., 2010; Hsu et al., 2010; Agarwal et al., 2011)

Example: Learning graphical models

3

2

5

$$\mathbb{P}(x_1, x_2, \dots, x_d) \propto \exp\left(-\frac{1}{2}x^T \Gamma^* x\right).$$

Problems with hidden/latent variables lead to sparse/low-rank decompositions.

5

(Chandrasekaran, Parillo & Willsky, 2010)

Example: Constrained system identification

Sample paths of first-order time series in d = 100 dimensions.

$$X(t+1) = \Theta^* X(t) + W(t), \qquad t = 1, 2, \dots$$

Example: Constrained system identification

State within a 3-dimensional subspace, remaining 97 dimensions of noise

Remainder of talk

- Matrix regression problems
 - Regularization with nuclear norm
 - ► Restricted strong convexity
 - ► A general theorem
- 2 Various examples
 - ► Matrix sketching
 - ► Matrix completion
 - ► Matrix decomposition

Matrix regression problems

For sample size n, define an observation operator $\mathfrak{X}: \mathbb{R}^{d_1 \times d_2} \to \mathbb{R}^n$:

$$\underbrace{\Theta^*}_{d_1 \times d_2 \text{ matrix}} \mapsto \underbrace{\mathfrak{X}(\Theta^*)}_{n\text{-vector of observations}}$$

Operator \mathfrak{X} and output $y \in \mathbb{R}^n$ linked via noisy linear model:

$$y = \mathfrak{X}(\Theta^*) + w.$$

Matrix regression problems

For sample size n, define an observation operator $\mathfrak{X}: \mathbb{R}^{d_1 \times d_2} \to \mathbb{R}^n$:

$$\underbrace{\Theta^*}_{d_1 \times d_2 \text{ matrix}} \mapsto \underbrace{\mathfrak{X}(\Theta^*)}_{n\text{-vector of observations}}$$

Operator \mathfrak{X} and output $y \in \mathbb{R}^n$ linked via noisy linear model:

$$y = \mathfrak{X}(\Theta^*) + w.$$

Estimate unknown Θ^* by minimizing loss function

$$\widehat{\Theta} \in \arg\min_{\Theta \in \mathbb{R}^{d_1 \times d_2}} \left\{ \mathcal{L}(\Theta; y, \mathfrak{X}) + \lambda_n |\!|\!| \Theta |\!|\!|\!|_{\text{nuc}} \right\},\,$$

regularized with nuclear norm $\|\Theta\|_{\text{nuc}} = \sum_{j=1}^{\min\{d_1, d_2\}} \sigma_j(\Theta)$

Least-squares loss is commonly used:

$$\mathcal{L}(\Theta; y, \mathfrak{X}) = \frac{1}{2n} \|y - \mathfrak{X}(\Theta)\|_{2}^{2}.$$

Noisy matrix completion (unrescaled)

Noisy matrix completion (rescaled)

Strong convexity never holds

When $n \ll d_1 d_2$, the Hessian $\nabla \mathcal{L}(\Theta; y, \mathfrak{X}) = \frac{1}{n} \mathfrak{X}^* \mathfrak{X}$ has nullspace of dimension $(d_1 d_2) - n$.

Restricted strong convexity (RSC)

Definition (Negahban et al., 2009)

The operator $\mathfrak{X}: \mathbb{R}^{d_1 \times d_2} \to \mathbb{R}^n$ satisfies RSC (w.r.t. nuclear norm) with curvature $\gamma > 0$ and tolerance $\kappa > 0$

$$\frac{\|\mathfrak{X}(\Theta)\|_2^2}{2} \geq \gamma(\mathfrak{X}) \ \|\!\!\|\Theta\|_F^2 - \kappa(\mathfrak{X}) \ \|\!\!\|\Theta\|_{\mathrm{nuc}}^2 \qquad \text{for all } \Theta \in \mathbb{R}^{d_1 \times d_2}.$$

Restricted strong convexity (RSC)

Definition (Negahban et al., 2009)

The operator $\mathfrak{X}: \mathbb{R}^{d_1 \times d_2} \to \mathbb{R}^n$ satisfies RSC (w.r.t. nuclear norm) with curvature $\gamma > 0$ and tolerance $\kappa > 0$

$$\frac{\|\mathfrak{X}(\Theta)\|_2^2}{n} \geq \gamma(\mathfrak{X}) \; \|\!\!|\Theta\|_F^2 - \kappa(\mathfrak{X}) \; \|\!\!|\Theta\|_{\mathrm{nuc}}^2 \qquad \text{for all } \Theta \in \mathbb{R}^{d_1 \times d_2}.$$

- Reduces to ordinary strong convexity if $\kappa = 0$, but this never holds when $n \ll d_1 d_2$.
- ② Guarantees that least-squares loss $\mathcal{L}(\Theta) = \frac{1}{2n} \|y \mathfrak{X}(\Theta)\|_2^2$ is strongly convex in a restricted sense.
- **3** Generalizes to other loss functions and regularizers.
- 4 Substantially milder requirement than restricted isometry.

General guarantee for regression with nuclear norm

Given $y = \mathfrak{X}(\Theta^*) + w$, estimate Θ^* by solving the SDP:

$$\widehat{\Theta} \in \arg\min_{\Theta \in \mathbb{R}^{d_1 \times d_2}} \big\{ \frac{1}{2n} \|y - \mathfrak{X}(\Theta)\|_2^2 + \frac{\mathbf{\lambda_n}}{\mathbf{N}} \|\Theta\|_{\mathrm{nuc}} \big\}.$$

General guarantee for regression with nuclear norm

Given $y = \mathfrak{X}(\Theta^*) + w$, estimate Θ^* by solving the SDP:

$$\widehat{\Theta} \in \arg\min_{\Theta \in \mathbb{R}^{d_1 \times d_2}} \big\{ \frac{1}{2n} \|y - \mathfrak{X}(\Theta)\|_2^2 + \frac{\mathbf{\lambda_n}}{\mathbf{N}} \|\Theta\|_{\mathrm{nuc}} \big\}.$$

Conditions:

- operator $\mathfrak X$ satisfies RSC with curvature $\gamma(\mathfrak X)$ and tolerance $\kappa(\mathfrak X)$.
- regularization parameter satisfies $\lambda_n \geq 2 \| \mathfrak{X}^*(w) \|_{\text{op}} / n$.

General guarantee for regression with nuclear norm

Given $y = \mathfrak{X}(\Theta^*) + w$, estimate Θ^* by solving the SDP:

$$\widehat{\Theta} \in \arg\min_{\Theta \in \mathbb{R}^{d_1 \times d_2}} \Big\{ \frac{1}{2n} \|y - \mathfrak{X}(\Theta)\|_2^2 + \frac{\lambda_n}{n} \|\Theta\|_{\text{nuc}} \Big\}.$$

Conditions:

- operator \mathfrak{X} satisfies RSC with curvature $\gamma(\mathfrak{X})$ and tolerance $\kappa(\mathfrak{X})$.
- regularization parameter satisfies $\lambda_n \geq 2 \|\mathfrak{X}^*(w)\|_{\text{op}}/n$.

Theorem (Negahban & W., 2009)

For any matrix $\Theta^* \in \mathbb{R}^{d_1 \times d_2}$, any solution $\widehat{\Theta}$ to the SDP satisfies the bound

$$\|\widehat{\Theta} - \Theta^*\|_F^2 \lesssim \min_{r \in \{1, 2, \dots, \min\{d_1, d_2\}\}} \frac{\bar{\lambda}_n}{\gamma(\mathfrak{X})} \left\{ \underbrace{\frac{\bar{\lambda}_n \, r}{\gamma(\mathfrak{X})}}_{Estim. \ error} + \underbrace{\sum_{j=r+1}^{\min\{d_1, d_2\}} \sigma_j(\Theta^*)}_{Approximation \ error} \right\},$$

where $\bar{\lambda}_n = \max\{\lambda_n, \kappa(\mathfrak{X})\}.$

Example: Matrix completion

Random operator $\mathfrak{X}: \mathbb{R}^{d \times d} \to \mathbb{R}^n$ with

$$\left[\mathfrak{X}(\Theta^*)\right]_i = \Theta^*_{a(i)b(i)} = \langle \langle E_{a(i)b(i)}, \ \Theta^* \rangle \rangle,$$

where (a(i), b(i)) is a matrix index sampled u.a.r.

Even in noiseless setting, model is unidentifiable: Consider a rank one matrix:

$$\Theta^* = e_1 e_1^T = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & 0 \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

Past work has imposed eigen-incoherence conditions. Chandrasekaran et al., 2009 Gross, 2009; Keshavan et al., 2009) (Recht & Candes, 2008;

A milder "spikiness" condition

Consider the "poisoned" low-rank matrix:

$$\Theta^* = \Gamma^* + \delta e_1 e_1^T = \Gamma^* + \delta \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & 0 \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

where Γ^* is rank r-1, all eigenectors perpendicular to e_1 .

Excluded by eigen-incoherence for all $\delta > 0$.

A milder "spikiness" condition

Consider the "poisoned" low-rank matrix:

$$\Theta^* = \Gamma^* + \delta e_1 e_1^T = \Gamma^* + \delta \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & 0 \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

where Γ^* is rank r-1, all eigenectors perpendicular to e_1 .

Excluded by eigen-incoherence for all $\delta > 0$.

Control by spikiness ratio:

(Negahban & W., 2010)

$$1 \le \frac{d\|\Theta^*\|_{\infty}}{\|\Theta\|_F} \le d.$$

Noisy matrix completion (general ℓ_q -balls)

Suppose that Θ^* lies in the ℓ_q -ball:

$$\mathbb{B}_q(R_q) := \big\{ \Theta \in \mathbb{R}^{d \times d} \mid \sum_{j=1}^d |\sigma_j(\Theta)|^q \le R_q \big\}.$$

Special case q = 0 means Θ^* has rank $r = R_0$.

Corollary (Negahban & W., 2010)

If noise is zero-mean with ν -sub-exponential tails, and Θ^* has spikiness at most α , then

$$\|\widehat{\Theta} - \Theta^*\|_F^2 \lesssim R_q \left((\nu^2 \vee 1)(\alpha)^2 \frac{d \log d}{n} \right)^{1 - \frac{q}{2}}$$

with high probability.

Other work for exactly low rank matrices

In this special case, our result gives:

$$\|\!\|\widehat{\Theta} - \Theta^*\|\!\|_F \lesssim \max\{\nu, \alpha\} \sqrt{\frac{rd \log d}{n}}.$$

Other work for exactly low rank matrices

In this special case, our result gives:

$$|\!|\!|\!|\widehat{\Theta} - \Theta^*|\!|\!|\!|_F \precsim \; \max\{\nu,\alpha\} \, \sqrt{\frac{rd\log d}{n}}.$$

Candes & Plan, 2009:

- analyzed nuclear norm relaxation
- under eigen-incoherence conditions with parameter μ , sufficient for exact recovery
- based on extrapolation from exact recovery:

$$\|\widehat{\Theta} - \Theta^*\|_F \lesssim \nu \mu \left\{ \sqrt{d} + \frac{\sqrt{n}}{d} \right\}.$$

• for fixed noise variance ν^2 , diverges as $d \to +\infty$; also diverges as $n \to +\infty$ for fixed d

Other work for exactly low rank matrices

In this special case, our result gives:

$$\|\!|\!|\widehat{\Theta} - \Theta^*|\!|\!|_F \lesssim \max\{\nu, \alpha\} \sqrt{\frac{rd \log d}{n}}.$$

Keshavan, Montanari & Oh, 2009:

- analyzed alternative method based on trimmed SVD
- established bound

$$\|\widehat{\Theta} - \Theta^*\|_F \lesssim \nu \mu \kappa(\Theta^*) \sqrt{\frac{rd}{n}},$$

- bound grows with matrix condition number $\kappa(\Theta^*) = \frac{\sigma_{\max}(\Theta^*)}{\sigma_{\min}(\Theta^*)}$
- eigen-incoherence conditions are imposed

Example: Noisy matrix decomposition

$$Y = \Theta^* + \Gamma^* + W$$

Example: Noisy matrix decomposition

$$Y = \Theta^* + \Gamma^* + W$$

Method with two regularizers plus "spikiness" control on Θ :

$$(\widehat{\Theta}, \widehat{\Gamma}) \in \arg\min_{(\Theta, \Gamma)} \left\{ \frac{1}{2n} \|y - (\Theta + \Gamma)\|_2^2 + \lambda_n \|\Theta\|_{\text{nuc}} + \mu_n \|\Gamma^*\|_1 \right\}.$$

- Noiseless version: Chandrasekaran et al., 2009; Candes et al. 2010; Xu et al., 2010.
- Noisy version: Hu et al., 2010.

Consequences for noisy matrix decomposition

Theorem (Agarwal, Negahban & W., 2011)

With appropriate choice of regularization parameters (λ_n, μ_n) , the squared Frob. error $e^2(\widehat{\Theta}, \widehat{\Gamma})$ of any SDP solution satisfies

$$e^{2} \leq \underbrace{c_{1}\nu^{2}\left(\frac{r\left(d_{1}+d_{2}\right)}{d_{1}d_{2}}\right)}_{Low-rank\ component} + \underbrace{c_{1}\nu^{2}\left(\frac{k\ \log\left(\frac{d_{1}d_{2}}{k}\right)}{d_{1}d_{2}}\right)}_{Sparse\ component} + \underbrace{c_{1}\frac{\alpha_{d}^{2}k}{d_{1}d_{2}}}_{Unidentifiable\ component}$$

with high probability.

Consequences for noisy matrix decomposition

Theorem (Agarwal, Negahban & W., 2011)

With appropriate choice of regularization parameters (λ_n, μ_n) , the squared Frob. error $e^2(\widehat{\Theta}, \widehat{\Gamma})$ of any SDP solution satisfies

$$e^{2} \leq \underbrace{c_{1}\nu^{2}\left(\frac{r\left(d_{1}+d_{2}\right)}{d_{1}d_{2}}\right)}_{Low-rank\ component} + \underbrace{c_{1}\nu^{2}\left(\frac{k\log\left(\frac{d_{1}d_{2}}{k}\right)}{d_{1}d_{2}}\right)}_{Sparse\ component} + \underbrace{c_{1}\frac{\alpha_{d}^{2}k}{d_{1}d_{2}}}_{Unidentifiable\ component}$$

with high probability.

Intuition:

- effective sample size $n = d_1 d_2$
- low-rank component has $\approx r(d_1 + d_2)$ degrees of freedom
- sparse component has k non-zeros hidden in d_1d_2 , and hence $\approx k \log \left(\frac{d_1d_2}{k}\right)$ degrees of freedom
- term $\alpha_d^2 \frac{k}{d_1 d_2}$ is unavoidable due to unidentifiability

Minimax-optimality

• minimax error over a matrix family:

$$\mathfrak{M}(\mathcal{F}) := \inf_{(\widetilde{\Theta},\widetilde{\Gamma})} \sup_{(\Theta^*,\Gamma^*) \in \mathcal{F}} \mathbb{E} \big[\| \widetilde{\Theta} - \Theta^* \|_F^2 + \| \widetilde{\Gamma} - \Gamma^* \|_F^2 \big],$$

Minimax-optimality

• minimax error over a matrix family:

$$\mathfrak{M}(\mathcal{F}) := \inf_{(\widetilde{\Theta}, \widetilde{\Gamma})} \sup_{(\Theta^*, \Gamma^*) \in \mathcal{F}} \mathbb{E} \big[\| \widetilde{\Theta} - \Theta^* \|_F^2 + \| \widetilde{\Gamma} - \Gamma^* \|_F^2 \big],$$

• low-rank plus sparse family

$$\mathcal{F}_{\mathrm{sp}} := \left\{ (\Theta^*, \Gamma^*) \mid \mathrm{rank}(\Theta^*) \le r, \mid \mathrm{supp}(\Gamma^*)| \le k, \|\Theta^*\|_{\infty} \le \frac{\alpha_d}{\sqrt{d_1 d_2}} \right\}.$$

Minimax-optimality

• minimax error over a matrix family:

$$\mathfrak{M}(\mathcal{F}) := \inf_{(\widetilde{\Theta}, \widetilde{\Gamma})} \sup_{(\Theta^*, \Gamma^*) \in \mathcal{F}} \mathbb{E} \big[\| \widetilde{\Theta} - \Theta^* \|_F^2 + \| \widetilde{\Gamma} - \Gamma^* \|_F^2 \big],$$

• low-rank plus sparse family

$$\mathcal{F}_{\mathrm{sp}} := \left\{ (\Theta^*, \Gamma^*) \mid \mathrm{rank}(\Theta^*) \leq r, \mid \mathrm{supp}(\Gamma^*) \mid \leq k, \, \|\Theta^*\|_{\infty} \leq \frac{\alpha_d}{\sqrt{d_1 d_2}} \right\}.$$

Theorem (Agarwal, Negahban & W, 2011)

There is a universal constant $c_0 > 0$ such that for all $\alpha_d \geq 32\sqrt{\log(d_1d_2)}$, we have

$$\mathfrak{M}(\mathcal{F}_{\rm sp}(r,k,\alpha_d)) \ge c_0 \nu^2 \left\{ \frac{r (d_1 + d_2)}{d_1 d_2} + \frac{k \log(\frac{d_1 d_2 - k}{k/2})}{d_1 d_2} \right\} + c_0 \frac{\alpha_d^2 k}{d_1 d_2}.$$

Summary

- high-dimensional matrix problems occur in many settings
- estimators based on nuclear norm and other convex matrix regularizers are popular
- a single theoretical result:
 - ▶ provides guarantees for many models
 - \blacktriangleright resulting bounds are minimax-optimal (over all algorithms) in many cases

Some references:

- ullet S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu (2009). A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers, NIPS Conference.
- S. Negahban and M. J. Wainwright (2009). Estimation rates of (near) low-rank matrices with noise and high-dimensional scaling. arxiv.org/abs/0912.5100. To appear in *Annals of Statistics*.
- S. Negahban and M. J. Wainwright (2010). Restricted strong convexity and (weighted) matrix completion: Optimal bounds with noise. arxiv.org/abs/0112.5100, September 2010.