Bayesian Inference for Dirichlet-Multinomials

Mark Johnson

Macquarie University
Sydney, Australia

MLSS “Summer School”
Random variables and “distributed according to” notation

• A probability distribution F is a non-negative function from some set \mathcal{X} whose values sum (integrate) to 1

• A random variable X is distributed according to a distribution F, or more simply, X has distribution F, written $X \sim F$, iff:

$$P(X = x) = F(x) \text{ for all } x$$

(This is for discrete RVs).

• You’ll sometimes see the notion

$$X \mid Y \sim F$$

which means “X is generated conditional on Y with distribution F” (where F usually depends on Y), i.e.,

$$P(X \mid Y) = F(X \mid Y)$$
Outline

Introduction to Bayesian Inference

Mixture models

Sampling with Markov Chains

The Gibbs sampler

Gibbs sampling for Dirichlet-Multinominal mixtures

Topic modeling with Dirichlet multinominal mixtures
Bayes’ rule

\[P(\text{Hypothesis} \mid \text{Data}) = \frac{P(\text{Data} \mid \text{Hypothesis}) \, P(\text{Hypothesis})}{P(\text{Data})} \]

- Bayesian’s use Bayes’ Rule to update beliefs in hypotheses in response to data.
- \(P(\text{Hypothesis} \mid \text{Data}) \) is the posterior distribution,
- \(P(\text{Hypothesis}) \) is the prior distribution,
- \(P(\text{Data} \mid \text{Hypothesis}) \) is the likelihood, and
- \(P(\text{Data}) \) is a normalising constant sometimes called the evidence.
Computing the normalising constant

\[P(\text{Data}) = \sum_{\text{Hypothesis}' \in \mathcal{H}} P(\text{Data}, \text{Hypothesis}') \]

\[= \sum_{\text{Hypothesis}' \in \mathcal{H}} P(\text{Data} \mid \text{Hypothesis}') P(\text{Hypothesis}') \]

- If set of hypotheses \(\mathcal{H} \) is small, can calculate \(P(\text{Data}) \) by enumeration
- But often these sums are intractable
Bayesian belief updating

- Idea: treat posterior from last observation as the prior for next
- Consistency follows because likelihood factors
 - Suppose \(\mathbf{d} = (d_1, d_2) \). Then the posterior of a hypothesis \(h \) is:

\[
P(h \mid d_1, d_2) \propto P(h) P(d_1, d_2 \mid h) \\
= P(h) P(d_1 \mid h) P(d_2 \mid h, d_1) \\
\propto P(h \mid d_1) P(d_2 \mid h, d_1)
\]

updated prior likelihood
Discrete distributions

- A *discrete distribution* has a finite set of outcomes $1, \ldots, m$.
- A discrete distribution is parameterized by a vector $\theta = (\theta_1, \ldots, \theta_m)$, where $P(X = j|\theta) = \theta_j$ (so $\sum_{j=1}^{m} \theta_j = 1$).
 - Example: An m-sided die, where $\theta_j =$ prob. of face j.
- Suppose $X = (X_1, \ldots, X_n)$ and each $X_i|\theta \sim \text{DISCRETE}(\theta)$. Then:
 \[
P(X|\theta) = \prod_{i=1}^{n} \text{DISCRETE}(X_i; \theta) = \prod_{j=1}^{m} \theta_j^{N_j}
 \]
 where N_j is the number of times j occurs in X.
- Goal of next few slides: compute $P(\theta|X)$.
Multinomial distributions

- Suppose $X_i \sim \text{DISCRETE}(\theta)$ for $i = 1, \ldots, n$, and N_j is the number of times j occurs in X.
- Then $N|n, \theta \sim \text{MULTI}(\theta, n)$, and

$$P(N|n, \theta) = \frac{n!}{\prod_{j=1}^{m} N_j!} \prod_{j=1}^{m} \theta_j^{N_j}$$

where $n! / \prod_{j=1}^{m} N_j!$ is the number of sequences of values with occurrence counts N.
- The vector N is known as a \textit{sufficient statistic} for θ because it supplies as much information about θ as the original sequence X does.
Dirichlet distributions

- **Dirichlet distributions** are probability distributions over multinomial parameter vectors
 - called **Beta distributions** when $m = 2$
- Parameterized by a vector $\alpha = (\alpha_1, \ldots, \alpha_m)$ where $\alpha_j > 0$ that determines the shape of the distribution

\[
\text{DIR}(\theta | \alpha) = \frac{1}{C(\alpha)} \prod_{j=1}^{m} \theta_j^{\alpha_j - 1}
\]

\[
C(\alpha) = \int_{\Delta} \prod_{j=1}^{m} \theta_j^{\alpha_j - 1} d\theta = \frac{\prod_{j=1}^{m} \Gamma(\alpha_j)}{\Gamma(\sum_{j=1}^{m} \alpha_j)}
\]

- Γ is a generalization of the factorial function
- $\Gamma(k) = (k - 1)!$ for positive integer k
- $\Gamma(x) = (x - 1)\Gamma(x - 1)$ for all x
Plots of the Dirichlet distribution

\[P(\theta \mid \alpha) = \frac{\Gamma\left(\sum_{j=1}^{m} \alpha_j\right)}{\prod_{j=1}^{m} \Gamma(\alpha_j)} \prod_{k=1}^{m} \theta_k^{\alpha_k - 1} \]

\(\alpha = (1,1) \)
\(\alpha = (5,2) \)
\(\alpha = (0.1,0.1) \)
Dirichlet distributions as priors for θ

- Generative model:

\[
\begin{align*}
\theta & \mid \alpha \sim \text{DIR}(\alpha) \\
X_i & \mid \theta \sim \text{DISCRETE}(\theta), \quad i = 1, \ldots, n
\end{align*}
\]

- We can depict this as a Bayes net using *plates*, which indicate *replication*.
Inference for θ with Dirichlet priors

- Data $X = (X_1, \ldots, X_n)$ generated i.i.d. from $\text{DISCRETE}(\theta)$
- Prior is $\text{DIR}(\alpha)$. By Bayes Rule, posterior is:

$$P(\theta|X) \propto P(X|\theta) P(\theta)$$

$$\propto \left(\prod_{j=1}^{m} \theta_j^{N_j} \right) \left(\prod_{j=1}^{m} \theta_j^{\alpha_j-1} \right)$$

$$= \prod_{j=1}^{m} \theta_j^{N_j + \alpha_j - 1}, \text{ so}$$

$$P(\theta|X) = \text{DIR}(N + \alpha)$$

- So if prior is Dirichlet with parameters α, posterior is Dirichlet with parameters $N + \alpha$

\Rightarrow can regard Dirichlet parameters α as “pseudo-counts” from “pseudo-data”
Conjugate priors

- If prior is $\text{DIR}(\alpha)$ and likelihood is i.i.d. $\text{Discrete}(\theta)$, then posterior is $\text{DIR}(N + \alpha)$
 \[\Rightarrow \text{prior parameters } \alpha \text{ specify “pseudo-observations”} \]
- A class \mathcal{C} of prior distributions $P(H)$ is conjugate to a class of likelihood functions $P(D|H)$ iff the posterior $P(H|D)$ is also a member of \mathcal{C}
- In general, conjugate priors encode “pseudo-observations”
 - the difference between prior $P(H)$ and posterior $P(H|D)$ are the observations in D
 - but $P(H|D)$ belongs to same family as $P(H)$, and can serve as prior for inferences about more data D'
 \[\Rightarrow \text{must be possible to encode observations } D \text{ using parameters of prior} \]
- In general, the likelihood functions that have conjugate priors belong to the exponential family
Point estimates from Bayesian posteriors

- A “true” Bayesian prefers to use the full $P(H|D)$, but sometimes we have to choose a “best” hypothesis.
- The *Maximum a posteriori* (MAP) or *posterior mode* is
 \[
 \hat{H} = \arg\max_H P(H|D) = \arg\max_H P(D|H) P(H)
 \]
- The *expected value* $E_P[X]$ of X under distribution P is:
 \[
 E_P[X] = \int x P(X = x) \, dx
 \]
 The expected value is a kind of average, weighted by $P(X)$. The *expected value* $E[\theta]$ of θ is an estimate of θ.
The posterior mode of a Dirichlet

- The *Maximum a posteriori* (MAP) or *posterior mode* is:

\[\hat{H} = \arg\max_H P(H|D) = \arg\max_H P(D|H) P(H) \]

- For Dirichlets with parameters \(\alpha \), the MAP estimate is:

\[\hat{\theta}_j = \frac{\alpha_j - 1}{\sum_{j'=1}^m (\alpha_{j'} - 1)} \]

so if the posterior is \(\text{DIR}(N + \alpha) \), the MAP estimate for \(\theta \) is:

\[\hat{\theta}_j = \frac{N_j + \alpha_j - 1}{n + \sum_{j'=1}^m (\alpha_{j'} - 1)} \]

- If \(\alpha = 1 \) then \(\hat{\theta}_j = N_j / n \), which is also the *maximum likelihood estimate* (MLE) for \(\theta \)
The expected value of θ for a Dirichlet

- The expected value $E_P[X]$ of X under distribution P is:

$$E_P[X] = \int x P(X = x) \, dx$$

- For Dirichlets with parameters α, the expected value of θ_j is:

$$E_{\text{DIR}}(\alpha)[\theta_j] = \frac{\alpha_j}{\sum_{j'=1}^{m} \alpha_{j'}}$$

- Thus if the posterior is $\text{DIR}(N + \alpha)$, the expected value of θ_j is:

$$E_{\text{DIR}}(N+\alpha)[\theta_j] = \frac{N_j + \alpha_j}{n + \sum_{j'=1}^{m} \alpha_{j'}}$$

- $E[\theta]$ smooths or regularizes the MLE by adding pseudo-counts α to N
Sampling from a Dirichlet

\[\theta \mid \alpha \sim \text{Dir}(\alpha) \iff P(\theta \mid \alpha) = \frac{1}{C(\alpha)} \prod_{j=1}^{m} \theta_j^{\alpha_j-1}, \text{ where:} \]

\[C(\alpha) = \frac{\prod_{j=1}^{m} \Gamma(\alpha_j)}{\Gamma(\sum_{j=1}^{m} \alpha_j)} \]

- There are several algorithms for producing samples from \(\text{Dir}(\alpha) \). A simple one relies on the following result:
- If \(V_k \sim \text{Gamma}(\alpha_k) \) and \(\theta_k = V_k / (\sum_{k'=1}^{m} V_{k'}) \), then \(\theta \sim \text{Dir}(\alpha) \)
- This leads to the following algorithm for producing a sample \(\theta \) from \(\text{Dir}(\alpha) \)
 - Sample \(v_k \) from \(\text{Gamma}(\alpha_k) \) for \(k = 1, \ldots, m \)
 - Set \(\theta_k = v_k / (\sum_{k'=1}^{m} v_{k'}) \)
Posterior with Dirichlet priors

\[
\begin{align*}
\theta & \mid \alpha \sim \text{DIR}(\alpha) \\
X_i & \mid \theta \sim \text{DISCRETE}(\theta), \quad i = 1, \ldots, n
\end{align*}
\]

- **Integrate out** θ **to calculate posterior probability of** X

\[
P(X | \alpha) = \int P(X, \theta | \alpha) \, d\theta = \int_\Delta P(X | \theta) P(\theta | \alpha) \, d\theta
\]

\[
= \int_\Delta \left(\prod_{j=1}^{m} \theta_j^{N_j} \right) \left(\frac{1}{C(\alpha)} \prod_{j=1}^{m} \theta_j^{\alpha_j-1} \right) \, d\theta
\]

\[
= \frac{1}{C(\alpha)} \int_\Delta \prod_{j=1}^{m} \theta_j^{N_j+\alpha_j-1} \, d\theta
\]

\[
= \frac{C(N + \alpha)}{C(\alpha)}, \text{ where } C(\alpha) = \frac{\prod_{j=1}^{m} \Gamma(\alpha_j)}{\Gamma(\sum_{j=1}^{m} \alpha_j)}
\]

- **Collapsed Gibbs samplers** and the **Chinese Restaurant Process** rely on this result
The **predictive distribution** is the distribution of observation \(X_{n+1}\) given observations \(X = (X_1, \ldots, X_n)\) and prior \(\text{DIR}(\alpha)\)

\[
P(X_{n+1} = k \mid X, \alpha) = \int_{\Delta} P(X_{n+1} = k \mid \theta) P(\theta \mid X, \alpha) \, d\theta
\]

\[
= \int_{\Delta} \theta_k \text{DIR}(\theta \mid N + \alpha) \, d\theta
\]

\[
= \frac{N_k + \alpha_k}{\sum_{j=1}^{m} N_j + \alpha_j}
\]
Example: rolling a die

- Data \(d = (2, 5, 4, 2, 6) \)
Inference in complex models

- If the model is simple enough we can calculate the posterior exactly (conjugate priors)
- When the model is more complicated, we can only approximate the posterior
- **Variational Bayes** calculate the function closest to the posterior within a class of functions
- **Sampling algorithms** produce samples from the posterior distribution
 - **Markov chain Monte Carlo algorithms** (MCMC) use a Markov chain to produce samples
 - A **Gibbs sampler** is a particular MCMC algorithm
- **Particle filters** are a kind of *on-line* sampling algorithm (on-line algorithms only make one pass through the data)
Outline

Introduction to Bayesian Inference

Mixture models

Sampling with Markov Chains

The Gibbs sampler

Gibbs sampling for Dirichlet-Multinomial mixtures

Topic modeling with Dirichlet multinomial mixtures
Mixture models

- Observations X_i are a *mixture* of ℓ source distributions $F(\theta_k), k = 1, \ldots, \ell$
- The value of Z_i specifies which source distribution is used to generate X_i (Z is like a switch)
- If $Z_i = k$, then $X_i \sim F(\theta_k)$
- Here we assume the Z_i are not observed, i.e., *hidden*

\[
X_i \mid Z_i, \theta \sim F(\theta_{Z_i}) \quad i = 1, \ldots, n
\]
Applications of mixture models

- **Blind source separation**: data X_i come from ℓ different sources
 - Which X_i come from which source?
 (Z_i specifies the source of X_i)
 - What are the sources?
 (θ_k specifies properties of source k)
- X_i could be a document and Z_i the topic of X_i
- X_i could be an image and Z_i the object(s) in X_i
- X_i could be a person’s actions and Z_i the “cause” of X_i
- These are unsupervised learning problems, which are kinds of clustering problems
- In a Bayesian setting, compute posterior $P(Z, \theta|X)$

 But how can we compute this?
Dirichlet Multinomial mixtures

\[
\begin{align*}
\phi & \mid \beta \sim \text{DIR}(\beta) \\
Z_i & \mid \phi \sim \text{DISCRETE}(\phi) \quad i = 1, \ldots, n \\
\theta_k & \mid \alpha \sim \text{DIR}(\alpha) \quad k = 1, \ldots, \ell \\
X_{i,j} & \mid Z_i, \theta \sim \text{DISCRETE}(\theta_{Z_i}) \quad i = 1, \ldots, n; j = 1, \ldots, d_i
\end{align*}
\]

- \(Z_i\) is generated from a multinomial \(\phi\)
- Dirichlet priors on \(\phi\) and \(\theta_k\)
- Easy to modify this framework for other applications
- Why does each observation \(X_i\) consist of \(d_i\) elements?
- What effect do the priors \(\alpha\) and \(\beta\) have?
Outline

Introduction to Bayesian Inference

Mixture models

Sampling with Markov Chains

The Gibbs sampler

Gibbs sampling for Dirichlet-Multinomial mixtures

Topic modeling with Dirichlet multinomial mixtures
Why sample?

- Setup: Bayes net has variables X, whose value x we observe, and variables Y, whose value we don’t know
 - Y includes any *parameters* we want to estimate, such as θ
- Goal: compute the *expected value* of some function f:
 \[
 \mathbb{E}[f|X = x] = \sum_y f(x, y) \, \mathbb{P}(Y = y|X = x)
 \]
 - E.g., $f(x, y) = 1$ if x_1 and x_2 are both generated from same hidden state, and 0 otherwise
- In what follows, everything is conditioned on $X = x$, so take $\mathbb{P}(Y)$ to mean $\mathbb{P}(Y|X = x)$
- Suppose we can produce n samples $y^{(t)}$, where $Y^{(t)} \sim \mathbb{P}(Y)$. Then we can estimate:
 \[
 \mathbb{E}[f|X = x] = \frac{1}{n} \sum_{t=1}^{n} f(x, y^{(t)})
 \]
Markov chains

- A (first-order) Markov chain is a distribution over random variables $S^{(0)}, \ldots, S^{(n)}$ all ranging over the same state space S, where:

 $$P(S^{(0)}, \ldots, S^{(n)}) = P(S^{(0)}) \prod_{t=0}^{n-1} P(S^{(t+1)}|S^{(t)})$$

 $S^{(t+1)}$ is conditionally independent of $S^{(0)}, \ldots, S^{(t-1)}$ given $S^{(t)}$

- A Markov chain in homogeneous or time-invariant iff:

 $$P(S^{(t+1)} = s'|S^{(t)} = s) = P_{s',s} \text{ for all } t, s, s'$$

 The matrix P is called the transition probability matrix of the Markov chain

- If $P(S^{(t)} = s) = \pi^{(t)}_s$ (i.e., $\pi^{(t)}$ is a vector of state probabilities at time t) then:

 - $\pi^{(t+1)} = P \pi^{(t)}$
 - $\pi^{(t)} = P^t \pi^{(0)}$
Ergodicity

- A Markov chain with tpm P is \textit{ergodic} iff there is a positive integer m s.t. all elements of P^m are positive (i.e., there is an m-step path between any two states)
- Informally, an ergodic Markov chain “forgets” its past states
- Theorem: For each homogeneous ergodic Markov chain with tpm P there is a \textit{unique limiting distribution} D_P, i.e., as n approaches infinity, the distribution of S_n converges on D_P
- D_P is called the \textit{stationary distribution} of the Markov chain
- Let π be the vector representation of D_P, i.e., $D_P(y) = \pi_y$. Then:

\[
\pi = P\pi, \quad \text{and} \quad \pi = \lim_{{n \to \infty}} P^n \pi^{(0)} \quad \text{for every initial distribution } \pi^{(0)}
\]
Using a Markov chain for inference of $P(Y)$

- Set the state space S of the Markov chain to the range of Y (S may be *astronomically large*)
- Find a tpm P such that $P(Y) \sim D_P$
- “Run” the Markov chain, i.e.,
 - Pick $y^{(0)}$ somehow
 - For $t = 0, \ldots, n - 1$:
 - sample $y^{(t+1)}$ from $P(Y^{(t+1)} | Y^{(t)} = y^{(t)})$, i.e., from $P_{.,y^{(t)}}$
 - After discarding the first *burn-in* samples, use remaining samples to calculate statistics
- **WARNING:** in general the samples $y^{(t)}$ are *not independent*
Outline

Introduction to Bayesian Inference

Mixture models

Sampling with Markov Chains

The Gibbs sampler

Gibbs sampling for Dirichlet-Multinomial mixtures

Topic modeling with Dirichlet multinomial mixtures
The Gibbs sampler

- The Gibbs sampler is useful when:
 - \(Y \) is multivariate, i.e., \(Y = (Y_1, \ldots, Y_m) \), and
 - easy to sample from \(P(Y_j|Y_{-j}) \)
- The **Gibbs sampler** for \(P(Y) \) is the tpm \(P = \prod_{j=1}^{m} P^{(j)} \), where:
 \[
 P^{(j)}_{y',y} = \begin{cases}
 0 & \text{if } y'_{-j} \neq y_{-j} \\
 P(Y_j = y'_j|Y_{-j} = y_{-j}) & \text{if } y'_{-j} = y_{-j}
 \end{cases}
 \]
- Informally, the Gibbs sampler cycles through each of the variables \(Y_j \), replacing the current value \(y_j \) with a sample from \(P(Y_j|Y_{-j} = y_{-j}) \)
- There are *sequential scan* and *random scan* variants of Gibbs sampling
A simple example of Gibbs sampling

\[P(Y_1, Y_2) = \begin{cases}
 c & \text{if } |Y_1| < 5, |Y_2| < 5 \text{ and } |Y_1 - Y_2| < 1 \\
 0 & \text{otherwise}
\end{cases} \]

- The Gibbs sampler for \(P(Y_1, Y_2) \) samples repeatedly from:
 \[P(Y_2 | Y_1) = \text{UNIFORM}(\max(-5, Y_1 - 1), \min(5, Y_1 + 1)) \]
 \[P(Y_1 | Y_2) = \text{UNIFORM}(\max(-5, Y_2 - 1), \min(5, Y_2 + 1)) \]

Sample run

<table>
<thead>
<tr>
<th>(Y_1)</th>
<th>(Y_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>-0.119</td>
</tr>
<tr>
<td>0.363</td>
<td>-0.119</td>
</tr>
<tr>
<td>0.363</td>
<td>0.146</td>
</tr>
<tr>
<td>-0.681</td>
<td>0.146</td>
</tr>
<tr>
<td>-0.681</td>
<td>-1.551</td>
</tr>
</tbody>
</table>
A non-ergodic Gibbs sampler

\[P(Y_1, Y_2) = \begin{cases}
 c & \text{if } 1 < Y_1, Y_2 < 5 \text{ or } -5 < Y_1, Y_2 < -1 \\
 0 & \text{otherwise}
\end{cases} \]

- The Gibbs sampler for \(P(Y_1, Y_2) \), initialized at (2,2), samples repeatedly from:

\[P(Y_2|Y_1) = \text{UNIFORM}(1, 5) \]
\[P(Y_1|Y_2) = \text{UNIFORM}(1, 5) \]

I.e., never visits the negative values of \(Y_1, Y_2 \)

\[\begin{array}{cc}
 Y_1 & Y_2 \\
 2 & 2 \\
 2 & 2.72 \\
 2.84 & 2.72 \\
 2.84 & 4.71 \\
 2.63 & 4.71 \\
 2.63 & 4.52 \\
 1.11 & 4.52 \\
\end{array} \]
Why does the Gibbs sampler work?

- The Gibbs sampler tpm is $P = \prod_{j=1}^{m} P^{(j)}$, where $P^{(j)}$ replaces y_j with a sample from $P(Y_j|Y_{-j} = y_{-j})$ to produce y'
- But if y is a sample from $P(Y)$, then so is y', since y' differs from y only by replacing y_j with a sample from $P(Y_j|Y_{-j} = y_{-j})$
- Since $P^{(j)}$ maps samples from $P(Y)$ to samples from $P(Y)$, so does P

\Rightarrow $P(Y)$ is a stationary distribution for P

- If P is ergodic, then $P(Y)$ is the unique stationary distribution for P, i.e., the sampler converges to $P(Y)$
Gibbs sampling with Bayes nets

- Gibbs sampler: update y_j with sample from
 \[P(y_j | y_{-j}) \propto P(y_j, y_{-j}) \]
- Only need to evaluate terms that depend on y_j in Bayes net factorization
 - y_j appears once in a term $P(y_j | y_{Pa_j})$
 - y_j can appear multiple times in terms $P(y_k | \ldots, y_j, \ldots)$
- In graphical terms, need to know value of:
 - y_j's parents
 - y_j's children, and their other parents
Outline

Introduction to Bayesian Inference

Mixture models

Sampling with Markov Chains

The Gibbs sampler

Gibbs sampling for Dirichlet-Multinomial mixtures

Topic modeling with Dirichlet multinomial mixtures
Dirichlet-Multinomial mixtures

\[
\begin{align*}
\phi & \sim \text{DIR}(\beta) \\
Z_i & \sim \text{DISCRETE}(\phi) \quad i = 1, \ldots, n \\
\theta_k & \sim \text{DIR}(\alpha) \quad k = 1, \ldots, \ell \\
X_{i,j} & \sim \text{DISCRETE}(\theta_{Z_i}) \quad i = 1, \ldots, n; j = 1, \ldots, d_i
\end{align*}
\]

\[
P(\phi, Z, \theta, X | \alpha, \beta) = \frac{1}{C(\beta)} \prod_{k=1}^{\ell} \left(\phi_k^{\beta_k - 1 + N_k(Z)} \right) \\
\quad \times \frac{1}{C(\alpha)} \prod_{j=1}^{m} \theta_{k,j}^{\alpha_j - 1 + \sum_{i:Z_i=k} N_j(X_i)}
\]

where

\[
C(\alpha) = \frac{\prod_{j=1}^{m} \Gamma(\alpha_j)}{\Gamma(\sum_{j=1}^{m} \alpha_j)}
\]
Gibbs sampling for D-M mixtures

\[\phi \mid \beta \sim \text{DIR}(\beta) \]
\[Z_i \mid \phi \sim \text{DISCRETE}(\phi) \quad i = 1, \ldots, n \]
\[\theta_k \mid \alpha \sim \text{DIR}(\alpha) \quad k = 1, \ldots, \ell \]
\[X_{i,j} \mid Z_i, \theta \sim \text{DISCRETE}(\theta_{Z_i}) \quad i = 1, \ldots, n; j = 1, \ldots, d_i \]

\[
P(\phi \mid Z, \beta) = \text{DIR}(\phi; \beta + N(Z))
\]
\[
P(Z_i = k \mid \phi, \theta, X_i) \propto \phi_k \prod_{j=1}^{m} \theta_{k,j}^{N_j(X_i)}
\]
\[
P(\theta_k \mid \alpha, X, Z) = \text{DIR}(\theta_k; \alpha + \sum_{i:Z_i=k} N(X_i))
\]
Collapsed Dirichlet Multinomial mixtures

\[P(Z|\beta) = \frac{C(N(Z) + \beta)}{C(\beta)} \]

\[P(X|\alpha, Z) = \prod_{k=1}^{\ell} \frac{C(\alpha + \sum_{i:Z_i=k} N(X_i))}{C(\alpha)} \]

\[P(Z_i = k|Z_{-i}, \alpha, \beta) \propto \frac{N_k(Z_{-i}) + \beta_k}{n - 1 + \beta} \cdot \frac{C(\alpha + \sum_{i' \neq i:Z_{i'}=k} N(X_{i'}) + N(X_i))}{C(\alpha + \sum_{i' \neq i:Z_{i'}=k} N(X_{i'}))} \]

- \(P(Z_i = k|Z_{-i}, \alpha, \beta) \) is proportional to the prob. of generating:
 - \(Z_i = k \), given the other \(Z_{-i} \), and
 - \(X_i \) in cluster \(k \), given \(X_{-i} \) and \(Z_{-i} \)
Gibbs sampling for Dirichlet multinomial mixtures

• Each X_i could be generated from one of several Dirichlet multinomials
• The variable Z_i indicates the source for X_i
• The *uncollapsed sampler* samples Z, θ and ϕ
• The *collapsed sampler* integrates out θ and ϕ and just samples Z
• Collapsed samplers often (but not always) converge faster than uncollapsed samplers
• Collapsed samplers are usually easier to implement
Outline

Introduction to Bayesian Inference

Mixture models

Sampling with Markov Chains

The Gibbs sampler

Gibbs sampling for Dirichlet-Multinomial mixtures

Topic modeling with Dirichlet multinominal mixtures
Topic modeling of child-directed speech

- Data: Adam, Eve and Sarah’s mothers’ child-directed utterances

 I like it.

 why don’t you read Shadow yourself?

 that’s a terribly small horse for you to ride.

 why don’t you look at some of the toys in the basket.

 want to?

 do you want to see what I have?

 what is that?

 not in your mouth.

- 59,959 utterances, composed of 337,751 words
Uncollapsed Gibbs sampler for topic model

- Data consists of “documents” X_i
- Each X_i is a sequence of “words” $X_{i,j}$
- Initialize by *randomly* assign each document X_i to a topic Z_i
- Repeat the following:
 - Replace ϕ with a sample from a Dirichlet with parameters $\beta + N(Z)$
 - For each topic k, replace θ_k with a sample from a Dirichlet with parameters $\alpha + \sum_{i:Z_i=k} N(X_i)$
 - For each document i, replace Z_i with a sample from
 $$P(Z_i = k | \phi, \theta, X_i) \propto \phi_k \prod_{j=1}^{m} \theta_{k,j}^{N_j(X_i)}$$
Collapsed Gibbs sampler for topic model

- **Initialize** by *randomly* assign each document X_i to a topic Z_i
- **Repeat** the following:
 - For each document i in $1, \ldots, n$ (in random order):
 - Replace Z_i with a random sample from $P(Z_i|Z_{-i}, \alpha, \beta)$

\[
P(Z_i = k|Z_{-i}, \alpha, \beta) \propto \frac{N_k(Z_{-i}) + \beta_k}{n - 1 + \beta} \text{ C}(\alpha + \sum_{i' \neq i:Z_{i'}=k} N(X_{i'}) + N(X_i)) \frac{\text{C}(\alpha + \sum_{i' \neq i:Z_{i'}=k} N(X_{i'}))}{\text{C}(\alpha + \sum_{i' \neq i:Z_{i'}=k} N(X_{i'}))}
\]
Topics assigned after 100 iterations

1 big drum ?
3 horse .
8 who is that ?
9 those are checkers .
3 two checkers # yes .
1 play checkers ?
1 big horn ?
2 get over # Mommy .
1 shadow ?
9 I like it .
1 why don’t you read Shadow yourself ?
9 that’s a terribly small horse for you to ride .
2 why don’t you look at some of the toys in the basket .
1 want to ?
1 do you want to see what I have ?
8 what is that ?
2 not in your mouth .
2 let me put them together .
2 no # put floor .
3 no # that’s his pencil .
3 that’s not Daddy # that’s Colin .
| X | P(X|Z) | X | P(X|Z) | X | P(X|Z) |
|-----------|-----------|-----------|-----------|-----------|-----------|
| . | 0.12526 | ? | 0.19147 | . | 0.2258 |
| # | 0.045402 | you | 0.062577 | # | 0.0695 |
| you | 0.040475 | what | 0.061256 | that’s | 0.034538 |
| the | 0.030259 | that | 0.022295 | a | 0.034066 |
| it | 0.024154 | the | 0.022126 | no | 0.02649 |
| I | 0.021848 | # | 0.021809 | oh | 0.023558 |
| to | 0.018473 | is | 0.021683 | yeah | 0.020332 |
| don’t | 0.015473 | do | 0.016127 | the | 0.014907 |
| a | 0.013662 | it | 0.015927 | xxx | 0.014288 |
| ? | 0.013459 | a | 0.015092 | not | 0.013864 |
| in | 0.011708 | to | 0.013783 | it’s | 0.013343 |
| on | 0.011064 | did | 0.012631 | ? | 0.013033 |
| your | 0.010145 | are | 0.011427 | yes | 0.011795 |
| and | 0.009578 | what’s | 0.011195 | right | 0.0094166 |
| that | 0.0093303 | your | 0.0098961 | alright | 0.0088953 |
| have | 0.0088019 | huh | 0.0082591 | is | 0.0087975 |
| no | 0.0082514 | want | 0.0076782 | you’re | 0.0076571 |
| put | 0.0067486 | where | 0.0072346 | one | 0.006647 |
| know | 0.0064239 | why | 0.0070656 | ' | 0.0057673 |
| quack | 0.85 | | | | |
Remarks on cluster results

- The samplers cluster words by clustering the documents they appear in, and cluster documents by clustering the words that appear in them.
- Even though there were $\ell = 10$ clusters and $\alpha = 1$, $\beta = 1$, typically only 4 clusters were occupied after convergence.
- Words x with high marginal probability $P(X = x)$ are typically so frequent that they occur in all clusters.

⇒ Listing the most probable words in each cluster may not be a good way of characterizing the clusters.
- Instead, we can Bayes invert and find the words that are most strongly associated with each class.

\[
P(Z = k \mid X = x) = \frac{N_{k,x}(Z, X) + \epsilon}{N_x(X) + \epsilon \ell}
\]
Purest words of each cluster

X	\(P(Z	X) \)					
I'll	0.97168	d(o)	0.97138	0	0.94715	quack	0.64286
we'll	0.96486	what's	0.95242	mmhm	0.944	.	0.00010802
c(o)me	0.95319	what're	0.94348	www	0.90244		
you'll	0.95238	happened	0.93722	m:hm	0.83019		
may	0.94845	hmm	0.93343	uhhuh	0.81667		
let's	0.947	whose	0.92437	uh(uh)	0.78571		
thought	0.94382	what	0.9227	uhhuh	0.77551		
won't	0.93645	where's	0.92241	that's	0.7755		
come	0.93588	doing	0.90196	yep	0.76531		
let	0.93255	where'd	0.9009	um	0.76282		
I	0.93192	don't	0.89157	oh+boy	0.73529		
(h)ere	0.93082	whyn't	0.89157	d@l	0.72603		
stay	0.92073	who	0.88527	goodness	0.7234		
later	0.91964	how's	0.875	s@l	0.72		
thank	0.91667	who's	0.85068	sorry	0.70588		
them	0.9124	[:	0.85047	thank+you	0.6875		
can't	0.90762	?	0.84783	o:h	0.68		
never	0.9058	matter	0.82963	nope	0.67857		
em	0.89922	what'd	0.8125	hi	0.67213		
Summary

- Complex models often don’t have analytic solutions
- Approximate inference can be used on many such models
- Monte Carlo Markov chain methods produce samples from (an approximation to) the posterior distribution
- Gibbs sampling is an MCMC procedure that resamples each variable conditioned on the values of the other variables
- If you can sample from the conditional distribution of each hidden variable in a Bayes net, you can use Gibbs sampling to sample from the joint posterior distribution
- We applied Gibbs sampling to Dirichlet-multinomial mixtures to cluster sentences