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To obtain an action for the Euler equation, one 
introduces a Lagrangian displacement ξ, joining 
initial and perturbed fluid elements.

ξ

Actions for the perturbation 
equations by Chandra and 
students, culminating in work by 
Lynden-Bell and Ostriker.

Gauge-freedom associated in  ξ associated by 
Noether’s theorem with conservation of 
circulation. 
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The peturbed fluid and metric has a conserved 
current jα associated with the time-translation 
symmetry of the equilibrium star. The 
corresponding conserved energy is

where Πα and παβ are the canonical momenta
associated with ξα and hαβ .   
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It follows that 

If E < 0 for some data on S preserving circulation 
and baryon number, the configuration is unstable 
or marginally stable: There exist perturbations on a 
family of asymptotically null hypersurfaces that do 
not die away in time.

If E > 0 for all such data on S, 
|E| is bounded in time and only finite 
energy can be radiated.



Local stability
In GR: Thorne, Kovetz, Bardeen, Schutz, Seguin

• When a fluid element is displaced 
upward, if its density decreases 
more rapidly than the density of 
the surrounding fluid, then the 
element will be buoyed upward
and the star will be unstable.
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• If the fluid element expands less 
than its surroundings it will fall 
back, and the star will be stable 
against convection.
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Within minutes after their birth, neutron stars cool to a 
temperature below the Fermi energy per nucleon, 
below 1012 K.  Their neutrons are then degenerate, 
with a nearly isentropic equation of state: 
Convectively stable, but with convective modes 
having nearly zero frequency.  



INSTABILITY FROM DIFFERENTIAL ROTATION
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Differential rotation is stable if a ring of fluid that 
is displaced outward, conserving angular 
momentum and mass, will fall back. 

The ring of fluid displaced from r to r +ξ will 
continue to move outward if its centripetal 
acceleration is larger that the restoring force
Marginal stability: 
If the displaced ring has the same value of v 2/r as 
the surrounding fluid, then, like the surrounding 
fluid, it will be in equilibrium.

Unstable if  
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Stable if j increases outward

Exactly the same criterion for GR
(Bardeen, Seguin, Abramowicz, Prasanna)  
Caveat: for large enough frame dragging – e.g., near a 
rotating black hole, the criterion is reversed. 
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This is a simplest example of the turning-point 
criterion governing axisymmetric stability:  
An instability point along a sequence of circular orbits 
of a particle of fixed baryon mass is a point at which
j is an extremum.



Instability to collapse
The 
pioneering 
paper
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In the Newtonian approximation, the canonical 
energy has the form (for            )

Choosing as initial data ξ=r gives   
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implying instability for Γ < 4/3.   
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By (in effect) deriving the relativistic version   

Chandra showed that the stronger gravity of the full theory 
gives a more stringent condition:

Because a gas of photons has                , and massive stars 
are radiation-dominated, the instability can be important for 
stars with M/R >>1.
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The criterion for dynamical instability to collapse is  
Ec < 0, with 

In an equilibrium neutron star, 

primarily because of a gradual change of 
composition (proton/neutron ratio) with radius. 

The dynamical timescale is too rapid to allow the 
composition of a perturbed fluid element to reach 
chemical equilibrium as its density is changed. 
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But a neutron star will be secularly unstable –
unstable on a longer timescale –
if there are lower energy equilibrium configurations 
with the same baryon number that can be reached by 
perturbations that change the entropy of a fluid 
element.   

For perturbations of this kind, governed by the 
equilibrium         ,  instability of a uniformly rotating 
star to collapse sets in at a turning point: 
The Chandrasekhar limit for white dwarfs and the 
corresponding upper mass limit for neutron stars. 
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(Thorne-Meltzer ’66)

Chandrasekhar 
limitUpper mass limit of 

neutron stars 



Sequences of neutron stars near minimum mass for two recent 
EOS candidates (Haensel, Zdunik, Douchin ’02)

unstable 
side

stable 
side



No other instabilities of spherical stars: 

Stable against convection and 

stable against collapse implies

(Lebovitz – Newtonian,  Ipser-Detweiler GR) 
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TURNING POINT INSTABILITY

Along a sequence of uniformly rotating stars with 
constant angular momentum, instability sets in at 
the maximum-mass configuration.
Or:
Along a sequence of uniformly rotating stars with 
constant baryon number, instability sets at a 
maximum angular-momentum configuration.  
(JF, Ipser, Sorkin, using Sorkin’s turning-point 
theorem. The J-M0 symmetry was pointed out by 
FIS, but was first used by Cook, Shapiro,Teukolsky).

0 0dM dJ∧ =Or:                          contours of constant M0 and J
(J. Read) are parallel 



[g/cm3]

M
M



c

K ("mass shedding")Ω = Ω

J=0

KΩ = Ω



/M M


3
c[g/cm ]

2/cJ GM


0J =

KΩ = Ω

KΩ = Ω

0J =

Unstable: larger M 
for same M0, J.

Stable

instability line: 
maximum mass at 
fixed J, M0

The 2-dimensional surface of rotating stars 
doubles over, curving up and left
larger central density smaller M



NONAXISYMMETRIC INSTABILITY OF 
ROTATING STARS



Old neutron stars in binary systems can be observed via x-
rays emitted by matter that spirals that onto the neutron star. 
The accreting matter spins up the neutron star.



Observed frequencies of old neutron stars spun up 
by accretion have been observed only up to 716 Hz: 
Is the frequency limited below 800 Hz?

0

100

200

300

400

500

600

700

800

Pulsars

LMXB Burst 
Frequencies



There is a sharp cutoff in the [accreting millisecond 
x-ray pulsar] population for spins above 730 Hz. 
RXTE has no significant selection biases against 
detecting oscillations as fast as 2000 Hz, making the 
absence of fast rotators extremely statistically 
significant

D. Chakrabarty 2008

Even for a 1.4        star, 800 Hz is well below the 
maximum spin of the star – the Kepler limit ΩK at 
which the star’s equator rotates at the speed of an 
orbiting satellite  
(for all but the stiffest EOS candidates)

M




Magnetically limited spins?
Inside the magnetosphere, matter corotates with the 
star. Only matter that accretes from outside of the 
magnetosphere can spin up the star.  
Equilibrium spin at the period P of a Keplerian
orbit at the magnetosphere:
With µ the magnetic dipole moment of the star,
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Magnetically limited spins?
But a sharp cutoff in frequency of accreting 
millisecond x-ray pulsars is not an obvious prediction 
of magnetically limited spins for a wide variety of 
accretion rates and for a range of magnetic field 
strengths presumed to extend below 108 G.

The cutoff and a fairly narrow range of frequencies 
has made gravitational-wave limited spin a 
competitive possibility for accreting neutron stars.    



NONAXISYMMETRIC INSTABILITY

DYNAMICAL INSTABILITY – PRESENT WITHOUT 
DISSIPATION, DYNAMICAL TIMESCALE 

GRAVITATIONAL-WAVE DRIVEN INSTABILITY



If the pattern rotates 
forward relative to     ,  it radiates positive J to ∞ ∞

GRAVITATIONAL-WAVE DRIVEN INSTABILITY
Chandrasekhar, Schutz, JF

Outgoing nonaxisymmetric modes radiate 
angular momentum to ∞
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If the pattern rotates 
backward relative to     ,  it radiates negative J to ∞ ∞
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That is:
A   forward mode, with J > 0, radiates positive  J to 
A backward mode, with J < 0, radiates negative J to 

Radiation damps all modes of a spherical star

∞
∞



But, a rotating star drags a mode in the direction of the
star's rotation: 

A mode with behavior                       that moves)( tmie ωφ −

backward relative to the star is dragged
forward relative to infinity, when

m Ω > ω .
The mode still has     J < 0,     because

Jstar + J mode < J star .
But 
this backward mode, with J < 0, radiates positive J.
Thus J becomes increasingly negative, and
THE AMPLITUDE OF THE MODE GROWS



PERTURBATIONS WITH ODINARY (POLAR) PARITY

modes with pressure and gravity 
providing the restoring force

Parity is that of 
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THE BAR MODE (l=m=2) 

HAS FREQUENCY  σ OF ORDER THE MAXIMUM

ANGULAR VELOCITY ΩK OF A STAR.

INSTABILITY OF POLAR MODES



IT IS DRAGGED BACKWARD ONLY 
WHEN A STAR ROTATES NEAR ITS MAXIMUM 
ANGULAR VELOCITY, ΩK

CENTRAL DENSITY

Ω = ΩK
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Polar modes unstable only for Ω near ΩK 
Ω > 1000 Hz          (unless neutron matter very stiff)
but observed cutoff in spins < 750 Hz

But it’s worse than that: 

Old accreting stars are too cold for polar modes 
to be unstable at any Ω

Instability of polar modes does not explain 
the cutoff in neutron-star spins.



PERTURBATIONS WITH AXIAL PARITY

Parity is opposite to that of 
Axial perturbations of a spherical star do not change density 
or pressure, because scalars have the parity of 

No restoring force in Euler equation: 
For spherical stars, axial parity perturbations are time 
independent currents  

, , 0rp uδ δ δ = ⇒
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View from pole View from equator

THE UNSTABLE   l = m = 2   r-MODE



Because their frequency is already zero for a 
nonrotating star, any slowly rotating star has 
backward-moving r-modes for each l that are 
dragged forward by the rotation.

That leads to much faster growth times for 
moderate neutron-star rotation.
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R-MODE INSTABILITY
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Axial perturbations of a spherical star do not change 
density and pressure, because scalars have parity of 
Ylm

Then no restoring force in Euler equation: 
Axial parity modes have zero frequency 
for nonrotating star.



THE  l = m = 2   r-MODE
Newtonian: Papaloizou & Pringle, Provost et al,    

Saio et al,  Lee, Strohmayer

Frequency  relative to a rotating observer:       

ωR = - 2/3 Ω COUNTERROTATING

Frequency  relative to an inertial observer:

ωI =  4/3 Ω COROTATING    ei(2φ-ωt)



corotating frame

Animations by Chad Hanna



inertial frame 

Animations by Chad Hanna



Above 1010K, beta decay and inverse beta decay 

n

Below 109K, shear viscosity dissipates 
the mode’s energy in heat 
τSHEAR = CT-2

produce neutrinos that carry off the energy of the mode:
bulk viscosity
τBULK = CT6

ep
ν

VISCOUS DAMPING

GR shear viscosity bulk viscosity

1 1 1 1
τ τ τ τ

= + +



GRR growth times for r-modes
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Star is unstable only when Ω is larger than critical 
frequency set by bulk and shear viscosity

Star spins down as it 
radiates its angular 
momentum in 
gravitational waves
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105 107 109 1011

Ω/ΩΚ 1

0.5

0.1

Star spun up by accretion:  Does it hover, with 
angular momentum 
gained in accretion  = 
angular momentum 
lost in gravitational waves? 

(Wagoner;
Andersson, Jones,
Kokkotas, Stergioulas)



Thermal runaway   (Levin)

108 109 1010  K

Ω



DOES THE INSTABILITY SURVIVE THE PHYSICS 
OF A REAL NEUTRON STAR?

Will nonlinear couplings limit the amplitude to δv/v << 1?

Will a continuous spectrum from GR or differential 
rotation eliminate the r-modes?   

(Kojima …Ferarri et al, Andersson, Lockitch, Watts)

Will a viscous boundary layer near a solid crust
windup of magnetic-field from 2ndorder differential 

rotation of the mode
bulk viscosity from hyperon production

kill the instability?



NONLINEAR EVOLUTION



Fully nonlinear numerical evolutions showed no 
evidence that nonlinear couplings limiting the amplitude 
to δv/v < 1:

Nonlinear fluid evolution in GR
Cowling approximation (background metric fixed) 

Font, Stergioulas

Newtonian approximation, with radiation-reaction term
GRR enhanced by huge factor to 
see growth in 20 dynamical times.

Lindblom, Tohline, Vallisneri



BUT 
Work to 2nd order in the perturbation amplitude shows 

TURBULENT CASCADE
The energy of an r-mode appears in this approximation to 
flow into short wavelength modes, with the effective 
dissipation too slow to be seen in the nonlinear runs. 

Arras, Flanagan, Morsink, Schenk, Teukolsky,Wasserman



Newtonian evolution with somewhat higher resolution, 
w/ and w/out enhanced radiation-driving force

(Gressman, 
Lin, 
Suen, 
Stergioulas, 
JF)

Catastrophic
decay of r-mode 



Fourier transform shows sidebands - apparent daughter 
modes.



Similar picture emerges from 2nd-order coupling 
of modes for uniform density model (Maclaurin)
(Brink, Teukolsky, Wasserman



Amplitude too low to see gravitational waves from 
r-mode instability in newborn stars.  

But a low amplitude can improve the chance of 
seeing gravitational waves from old stars spun up by 
accretion
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Thermal sit-there

(Owen)



Bondarescu, 
Teukolsky, 
Wasserman

3-mode evolution, 
with viscous 
heating (H) and 
neutrino cooling (C)



shear viscosity
higher viscosity                lower viscosity
(governed by slippage at boundary layer)
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Instability curve (hyperons)
(Lindblom & Owen 2002)
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