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To obtain an action for the Euler equation, one
Introduces a Lagrangian displacement &, joining
Initial and perturbed fluid elements.

Actions for the perturbation
equations by Chandra and

S students, culminating in work by
. Lynden-Bell and Ostriker.

Gauge-freedom assoclated In & assoclated by
Noether’s theorem with conservation of
circulation.



The peturbed fluid and metric has a conserved
current j# assoclated with the time-translation
symmetry of the equilibrium star. The
corresponding conserved energy Is

E = jsdaaj“ — Ld?’x a(I“E.E, + 7L, —17.67),

where 77¢ and #¢# are the canonical momenta
assoclated with ¢#and h ;.
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It follows that

If E < O for some data on S preserving circulation
and baryon number, the configuration is unstable
or marginally stable: There exist perturbations on a

family of asymptotically null hypersurfaces that do
not die away In time.

If E > 0O for all such data on S,
|E| Is bounded in time and only finite
energy can be radiated.



! L_ocal stability

In GR: Thorne, Kovetz, Bardeen, Schutz, Seguin

* When a fluid element is displaced

cHA ) At unward, if its density decreases
more rapidly than the density of
the surrounding fluid, then the
— element will be buoyed upward
i and the star will be unstable.

Fluid element Surrounding star

Unstable if
| Ae| > | A

star ‘



o |If the fluid element expands less
than its surroundings it will fall
back, and the star will be stable
against convection.

%,
Ae = (EjAp adiabatic
op ).

Astar6 = [Ej
dp star

Stable if

(Gej (dej
—_— < —_
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Within minutes after their birth, neutron stars cool to a
temperature below the Fermi energy per nucleon,
below 1012 K. Their neutrons are then degenerate,
with a nearly isentropic equation of state:
Convectively stable, but with convective modes
having nearly zero frequency.



INSTABILITY FROM DIFFERENTIAL ROTATION

Differential rotation is stable if a ring of fluid that
Is displaced outward, conserving angular
momentum and mass, will fall back.

The ring of fluid displaced from rto r +& will
continue to move outward If its centripetal
acceleration is larger that the restoring force
Marginal stability:

If the displaced ring has the same value of v?/r as
the surrounding fluid, then, like the surrounding
fluid, 1t will be in equilibrium.

Unstable if



Aj=0and j=vr imply

2 2 =2
V__AV_:éfldJ —
I

A
r re dr

star

Stable If J increases outward

Exactly the same criterion for GR



This 1s a simplest example of the turning-point
criterion governing axisymmetric stability:

An Instability point along a sequence of circular orbits
of a particle of fixed baryon mass Is a point at which

] Is an extremum.
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Instability to collapse

THE DYNAMICAL INSTABILITY OF GASEQOUS MASSES APPROACHING
THE SCHWARZSCHILD LIMIT IN GENERAL RELATIVITY

pioneering . CanbrAsraL
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University of Chicngo
Received May 11, 1964

ABSTRACT

I this paper the theory of the infinitesimal, baryon-number conserving, adiabatie, radial oscillations of
a gas sphere is developed in the fmmework of general relativity. A vanational base for determining the
characteristic frequencies of oscillation is established. It provides a convenient method for obtuining
sufficient conditions for the occurrence of dvnamical instability. The principal result of the anabysis is the
demonstration that the Newtonian lower limit 4, for the ratlo of the specific beats «, for insuring dynam-
ical stability is increased by effects ansing from general relativity; imli:;i, is mcreased to an extent that,
s0 long as ¥ iz finite, dynamical mstability will intervene before 2 mass contracts to the limiting radius
(2.5 M /) compatible with hydrostatic equilibrium. Moreover, if ¥ should exceed § only by a small
amount, then dynambcal instability wall vocur if the mass should contract to the radius

K 2GM
R¢=+:_E1:_ {T_"%}:l

where K is a constant dtptlhiiﬂgajan'u ipally, on the density distribution in the configuration, The value
of the constant K is expleitly evaluated for the homogeneous sphere of constant energy denaity and the
polytropes of Indices s = 1, 2, and 3,

L INTRODUCTION

It is well known that the gravitational field external to a spherical distribution of
matter 15 described by Schwarzschild's metric

—dil= -(1 —%ﬂ—":)l,’d.t"'}*{- PP 48T+ sinfideg?) + i dr i

— IGM [ et

where M is the inertial mass of the source of the gravitation. The metric {1} obtains,
whether or not the matter which gives rise to the field is endowed with radial motions,
g0 long as the spherical symmetry i preserved.

- From the form of the metric (1), it is apparent that the spacelike and the timelike



In the Newtonian approximation, the canonical
energy has the form

R 4 5.0 1 2 ey P
E, :jo dr{?pr ¢ +7Fp[(r 5)] }
Choosing as initial data &=r gives

E. :9J'0Rdr rzp(r—gj

Implying Instability for /"< 4/3.



By deriving the relativistic version

3A—v
e

r2

r2

E =j'Rdre“" ﬂp’— P +87p(e+p) [r?&% +
C 0 r p

€+

rp[(eVr%)'T}

Chandra showed that the stronger gravity of the full theory
gives a more stringent condition:

4 M
['<—+K—.
3 R
Because a gas of photons has I" =4/ 3 and massive stars
are radiation-dominated, the instability can be important for

stars with M/R >>1.



The criterion for dynamical instability to collapse Is
E.<O,with dlog p |
8|ng fixed composition

In an equilibrium neutron star,
F¢8Iogp

8 Iog [0 star

primarily because of a gradual change of
composition (proton/neutron ratio) with radius.

The dynamical timescale Is too rapid to allow the
composition of a perturbed fluid element to reach
chemical equilibrium as Its density Is changed.



But a neutron star will be secularly unstable —
unstable on a longer timescale —

If there are lower energy equilibrium configurations
with the same baryon number that can be reached by
perturbations that change the entropy of a fluid
element.

For perturbations of this kind, governed by the
equilibrium p(p), Instability of a uniformly rotating
star to collapse sets In at a turning point:

The Chandrasekhar limit for white dwarfs and the
corresponding upper mass limit for neutron stars.
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Upper mass limit of
neutron stars

Chandrasekhar
-limit




Sequences of neutron stars near minimum mass for two recent

EOS candidates
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No other instabilities of spherical stars:

Stable against convection and

stable against collapse implies

E.>0.

(Lebovitz — Newtonian, lIpser-Detweiler GR)



TURNING POINT INSTABILITY

Along a sequence of uniformly rotating stars with
constant angular momentum, instability sets in at

the maximum-mass configuration.
Or:

Along a sequence of uniformly rotating stars with
constant baryon number, instability sets at a
maximum angular-momentum configuration.

Or: dM,AdJ =0 contours of constant M, and J
are parallel
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The 2-dimensional surface of rotating stars
doubles over, curving up and left
larger central density smaller M



NONAXISYMMETRIC INSTABILITY OF
ROTATING STARS

SOLUTIONS OF TWO PROBLEMS IN THE THEORY OF GRAVITATIONAL RADIATION®*

&, Chandrasekhar
Univeraity of Chicagoe, Chicago, Illinois 60637
{(Received 30 January 1970)

The evolution of an elongated rotating configuration by gravitational radiation and the
possibility of a secular instability being induced by it are considered in the context of the
classleal homogeneous ligures of Maclaurin and Jacobi,

From Eq. (20) it follows that while the mode o,'*

s damped by gravitational radiation prior to the

point of bifurcation at "= =28,,, it is amplified in
the interval 48,,> @ >2B,,. Thus radiation reac-
tion, like viscosity, makes the Maclaurin spher-
0ld unstable beyond the point of bifurcation; but
the mode that is made unstable by radiation re-

action is nof the same one that is ms.de unatﬂ,ble
by viscosily,




Old neutron stars in binary systems can be observed via x-
rays emitted by matter that spirals that onto the neutron star.
The accreting matter spins up the neutron star.

4U 1820-30




Observed frequencies of old neutron stars spun up
by accretion have been observed only up to 716 Hz:
Is the frequency limited below 800 Hz?
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There Is a sharp cutoff in the [accreting millisecond
X-ray pulsar] population for spins above 730 Hz.
RXTE has no significant selection biases against
detecting oscillations as fast as 2000 Hz, making the
absence of fast rotators extremely statistically
significant

Even fora 1.4M  star, 800 Hz is well below the

maximum spin of the star — the Kepler limit £J, at
which the star’s equator rotates at the speed of an
orbiting satellite



Magnetically limited spins?

Inside the magnetosphere, matter corotates with the
star. Only matter that accretes from outside of the
magnetosphere can spin up the star.

Equilibrium spin at the period P of a Keplerian
orbit at the magnetosphere:

With u the magnetic dipole moment of the star,

3/7 6/7
b _ 10° M.@ [ yr ( 7 j
M 10°°G cm® Gosh&Lamb




Magnetically limited spins?

But a sharp cutoff in frequency of accreting
millisecond x-ray pulsars Is not an obvious prediction
of magnetically limited spins for a wide variety of
accretion rates and for a range of magnetic field
strengths presumed to extend below 108 G.

The cutoff and a fairly narrow range of frequencies
has made gravitational-wave limited spin a
competitive possibility for accreting neutron stars.



NONAXISYMMETRIC INSTABILITY

GRAVITATIONAL-WAVE DRIVEN INSTABILITY




“GRAVITATIONAL-WAVE DRIVEN INSTABILITY
Chandrasekhar, Schutz, JF

Outgoing nonaxisymmetric modes radiate
angular momentum to oo

If the pattern rotates
forward relative to oo, It radiates positive Jt0 oo
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If the pattern rotates
backward relative to oo, it radiates negative J to oo



If the pattern rotates
backward relative to oo, it radiates negative J to oo



If the pattern rotates
backward relative to oo, it radiates negative J to oo



If the pattern rotates
backward relative to oo, it radiates negative J to oo



That Is:
A forward mode, with J > 0, radiates positive Jto oo
A backward mode, with J < 0, radiates negative J to oo

Radiation damps all modes of a spherical star



But, a rotating star drags a mode in the direction of the
star's rotation:

A mode with behavior '{M?=®)  that moves
backward relative to the star is dragged
forward relative to infinity, when
mao>ow.

The mode still has  J<0, because

‘]star +J mode <J star .
But
this backward mode, with J < 0O, radiates positive J.
hus J becomes Increasingly negative, and
THE AMPLITUDE OF THE MODE GROWS




PERTURBATIONS WITH ODINARY (POLAR) PARITY

modes with pressure and gravity
providing the restoring force

Sp, S, 8u" o« Y,

(su?,su’) oc (VYY, , VY, )

m!

Parity is that of YIm







INSTABILITY OF POLAR MODES
THE BAR MODE (I=m=2) CO
HAS FREQUENCY & OF ORDER THE MAXIMUM

ANGULAR VELOCITY O, OF ASTAR.



IT IS DRAGGED BACKWARD ONLY
WHEN A STAR ROTATES NEAR ITS MAXIMUM
ANGULAR VELOCITY, Qy

S \

" m=3

s =4

m=3

—

ROTATION ENERGY
I INSTABILITY

1024 10> CENTRAL DENSITY




Polar modes unstable only for €2 near Q,

Q> 1000 Hz
but observed cutoff in spins < 750 Hz

But i1t’s worse than that:

Old accreting stars are too cold for polar modes
to be unstable at any Q

Instability of polar modes does not explain
the cutoff in neutron-star spins.



PERTURBATIONS WITH AXIAL PARITY

Parity is opposite to that of Y,
Axial perturbations of a spherical star do not change density
or pressure, because scalars have the parity of YIm

5p, 5e,0u" =0 =

No restoring force in Euler equation:
For spherical stars, axial parity perturbations are time
Independent currents

ouocrxVy,







Because their frequency Is already zero for a
nonrotating star, any slowly rotating star has
backward-moving r-modes for each | that are

dragged forward by the rotation.

That leads to much faster growth times for
moderate neutron-star rotation.




GRAVITATIONAL RADIATION
MASS QUADRUPOLE

Q= pY,ridv




AXIAL GRAVITATIO
CURRENT QUADRUPOLE s
@




R-MODE INSTABILITY
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Prior work on axial modes: Chandrasekhar & Ferrari
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Axial perturbations of a spherical star do not change
density and pressure, because scalars have parity of
YIm

Then no restoring force in Euler equation:
Axial parity modes have zero frequency
for nonrotating star.



THE I=m=2 r-MODE

Newtonian: Papaloizou & Pringle, Provost et al,
Saio et al, Lee, Strohmayer

Frequency relative to a rotating observer:

wr = - 2/3 Q COUNTERROTATING

Frequency relative to an inertial observer:

o, = 4/3Q COROTATING



corotating frame

Animations by Chad Hanna



Inertial frame

Animations by Chad Hanna



VISCOUS DAMPING

Above 101°K, beta decay and inverse beta decay
® ¢
P

v

produce neutrinos that carry off the energy of the mode:
bulk viscosity
TguLk = CT°

Below 10°K, shear viscosity dissipates
the mode’s energy In heat
Tshear = CT

1 1 1 1
—=— +

4 z-GR Tshear Vviscosity z-bulk Viscosity




GRR growth times for r-modes

L<

10 .
relativistic
o Newtonian
10
— 10
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10~ |
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Star 1s unstable only when Q Is larger than critical
frequency set by bulk and shear viscosity

Star spins down as it
radiates its angular
momentum In
gravitational waves

VISCOSIty
kills

¢ Instability
at high
temperature

105 107 10° 101
(From Lindblom-Owen-Morsink Figure) Temperature (K)



Star 1s unstable only when Q Is larger than critical
frequency set by bulk and shear viscosity

Star spins down as it

radiates its angular
momentum in

gravitational waves Bulk

VISCOSIty
kills

¢ Instability
at high
temperature

105 107 10° 101
(From Lindblom-Owen-Morsink Figure) Temperature (K)



Star spun up by accretion: Does It hover, with
angular momentum

gained in accretion =
angular momentum

lost In gravitational waves?

Q/Q, 1

(Wagoner;
Andersson, Jones,

Kokkotas, Stergioulas)
0.5

0.1
10° 107 10° 104



Thermal runaway
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DOES THE INSTABILITY SURVIVE THE PHYSICS
OF AREAL NEUTRON STAR?

Will nonlinear couplings limit the amplitude to ov/v << 17

Will a continuous spectrum from GR or differential
rotation eliminate the r-modes?

Will aviscous boundary layer near a solid crust
windup of magnetic-field from 2"9order differential
rotation of the mode

bulk viscosity from hyperon production
Kill the instability?




NONLINEAR EVOLUTION



Fully nonlinear numerical evolutions showed no
evidence that nonlinear couplings limiting the amplitude
to ov/iv < 1:

Nonlinear fluid evolution in GR
Cowling approximation (background metric fixed)

Font, Stergioulas

Newtonian approximation, with radiation-reaction term
GRR enhanced by huge factor to
see growth in 20 dynamical times.

Lindblom, Tohline, Vallisneri




BUT
Work to 2" order in the perturbation amplitude shows

TURBULENT CASCADE
The energy of an r-mode appears In this approximation to

flow into short wavelength modes, with the effective
dissipation too slow to be seen in the nonlinear runs.

Arras, Flanagan, Morsink, Schenk, Teukolsky,Wasserman



Newtonian evolution with somewhat higher resolution,
w/ and w/out enhanced radiation-driving force

Catastirophié
/ decay of r-mode

20 | 40 | 60
t (ms)




Fourier transform shows sidebands - apparent daughter

modes.
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Similar picture emerges from 2"d-order coupling

of modes for uniform density model (Maclaurin)
(Brink, Teukolsky, Wasserman
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Amplitude too low to see gravitational waves from
r-mode Instability in newborn stars.

But a low amplitude can improve the chance of
seeing gravitational waves from old stars spun up by
accretion
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Instability curve (hyperons)
(Lindblom & Owen 2002)
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