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Stochastic optimal control theory

optimal solution is noise dependent

computation is intractable
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KL control theory

Linear control theory (K 2005)

- continuous state and time, Gaussian noise, arbitrary reward and dynamics, additive control

- log transform linearizes Bellman equation (Schrödinger equation, Fleming)

- optimal cost-to-go as a free energy

J(x) = −ν log
X

xdt:T

exp (−S(xdt:T )/ν)

- phase transitions

- graphical model (approximate) inference

Discrete state & time case using KL (Todorov 2006)

Relation between the two approaches (K et al. arxiv)
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Opponent modeling

Agents successfull behavior depends on adequate model of environment and other
agents behavior.
- dialogue maintenance

- man-machine interfaces

- team play

Either cooperative or antagonistic
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Today’s talk

Approximate inference

KL control theory

Opponent modeling, nested beliefs or levels of sophistication
- KL control for agents; opponent models

- stag hunt game

Conclusions
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Approximate inference

Write p(x) = 1
Z exp(−E(x)).

KL(p|| exp(−E)) =
∑

x

p(x) log
p(x)

exp(−E(x))

p∗(x) = argminpKL(p|| exp(−E))

KL(P ∗|| exp(−E) = − log Z

Approximate inference:
- approximate KL
- restrict minimization to tractable class of p
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KL control theory

x denotes state of the agent and x1:T is a path through state space from time
t = 1 to T .

q(x1:T |x0) denotes a probability distribution over possible future trajectories given
that the agent at time t = 0 is is state x0, with

q(x1:T |x0) =

T
∏

t=0

q(xt+1|xt)

q(xt+1|xt) implements the allowed moves.

R(x1:T ) =
∑T

t=1 R(xt) is the total reward when following path x1:T .

The KL control problem is to find the probability distribution p(x1:T |x0) that
minimizes

C(p|x0) =
∑

x1:T

p(x1:T |x0)

(

log
p(x1:T |x0)

q(x1:T |x0)
− R(x1:T )

)

= KL(p||q) − 〈R〉p
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KL control theory
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KL control theory

C(p|x0) = KL(p||q) − 〈R〉p = KL(p||q expR)

The optimal solution for p is found by minimizing C wrt p. The solution and the
optimal control cost are

p∗(x1:T |x0) =
1

Z(x0)
q(x1:T |x0) exp (R(x1:T ))

C(p∗|x0) = − log Z(x0)

Z(x0) =
∑

x1:T

q(x1:T |x0) exp (R(x1:T ))

NB: Z(x0) is an integral over paths.
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KL control theory

The optimal control at time t = 0 is given by

p(x1|x0) =
∑

x2:T

p(x1:T |x0) ∝ q(x1|x0) exp(R(x1))β1(x1)

with βt(x) the backward messages.

xxx

....

x0 T−2 T−1 T

βT (xT ) = 1

βt−1(xt−1) =
∑

xt

q(xt|xt−1) exp(R(xt))βt(xt)
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KL control theory

The control computation is ’reduced’ to a (graphical model) inference problem.

Dynamics: pt
xy(π) → DP → Bellman Equation

Cost: C(π0:T ) = −〈R〉
↓ ↓

restricted class approximate J

↓ ↓
Free dynamics: qt

xy → approx inference → Optimal π

C = KL(p||q exp(R))

Optimal solution:

p(x1:T |x0) =
1

Z
q(x1:T |x0) exp(R(x0:T ))

Intractable, but standard approximate inference problem.
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Approximate inference for agent coordination using BP
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Approximate inference for stacking blocks using CVM
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Agents: a distributed approach

In the case of agents, the uncontrolled dynamics q factorizes over the agents:

q(x1
1:T , x2

1:T , . . . |x1
0, x

2
0, . . .) = q1(x1

1:T |x
1
0)q

2(x2
1:T |x

2
0) . . .

However, the reward R is a function of the states of all agents and can be different
for each agent.

Opponent modeling: each agent assumes a model according to which the other
agents behave.

C1(p1|x1
0, x

2
0) = KL(p1||q1) −

〈

R1
〉

p1,p̂2

C2(p2|x1
0, x

2
0) = KL(p2||q2) −

〈

R2
〉

p̂1,p2

p1(x1
1:T |x

1
0, x

2
0) =

1

Z1(x0)
q1(x1

1:T |x
1
0) exp

(

〈

R1
〉

p̂2

)

p2(x2
1:T |x

1
0, x

2
0) =

1

Z2(x0)
q2(x2

1:T |x
2
0) exp

(

〈

R2
〉

p̂1

)
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Two agents cooperative games

How do we choose the opponent model?

When the problem is symmetric:
- agents are identical (same states, same q)
- the reward is symmetric R1(x1, x2) = R2(x2, x1)
one can use a recursive argument leading to an infinite sequence of nested beliefs

Agent 1:
- assumes an initial opponent model p2

0(x
2
1:T |x

1
0, x

2
0)

- computes its optimal behaviour p1(x1
1:T |x

1
0, x

2
0)

- reasons, that agent 2 could have done the same.
- assumes new opponent model p2

1(x
2
1:T |x

1
0, x

2
0) = p1(x2

1:T |x
2
0, x

1
0)

- computes its optimal behaviour p1 against p2
1

- . . .
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Two agents cooperative games

C1(pk+1|x
1
0, x

2
0) = KL(pk+1||q) −

〈

R1
〉

pk+1,pk

pk+1(x
1
1:T |x

1
0, x

2
0) =

1

Z
q(x1

1:T |x
1
0) exp

(

〈

R1
〉

pk

)

The infinite recursion leads to a fixed point equation with solution
p∞(x1

1:T |x
1
0, x

2
0) = limk→∞ pk+1(x

1
1:T |x

1
0, x

2
0), where both agents play the same.
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Stag hunt game

Stag Hare
Stag 4,4 1,3
Hare 3,1 3,3

Get a Hare for yourself or a Stag together.

Two Nash equilibria:
if opponent plays Stag, I play Stag
if opponent plays Hare, I play Hare

Model for human and animal cooperation:
- slime molds can stick together to reproduce
- orcas can catch large schools of fish
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Static stag hunt game

x = ±1 denotes Stag or Hare. Reward matrix R(x1, x2):

1 -1
1 4,4 1,3
-1 3,1 3,3

The game is only played once, ie. T = 1.

There is no dependence on the current state, so that q(x1:T |x0) = 1.

We can express pk(x) in terms of its expectation value mk as pk(x) = 1
2(1+mkx).

mk+1 = tanh

(

1

2

∑

x′

(1 + mkx
′) (R(1, x′) − R(−1, x′))

)

= tanh(α + βmk)

α =
1

2
(R(1, 1) + R(1,−1) − R(−1, 1) − R(−1,−1))

β =
1

2
(R(1, 1) − R(1,−1) − R(−1, 1) + R(−1,−1))
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Static stag hunt game
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mk+1 = tanh(α + βmk) versus mk.

For small β there is a unique solution.
For large β there are two solutions, and dependence on initial conditions.
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Static stag hunt game

The two Nash equilibria imply β > 0,−β < α < β.
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Stag hunt game has local minima. Other games, such as Prisoners Dilemma, not.
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Dynamic stag hunt game

Optimal control is computed by backwards message passing:

C1(pk+1|x
1
0, x

2
0) = KL(pk+1||q) −

〈

R1
〉

pk+1,pk

pk+1(x
1
1:T |x

1
0, x

2
0) =

1

Z
q(x1

1:T |x
1
0) exp

(

〈

R1
〉

pk

)

〈

R1
〉

pk
is the expected future reward of agent 1’s trajectory x1

1:T when agent 2

acts according to pk(x
2
1:T |x

1
0, x

2
0). It can be computed as a prediction:

〈

R1
〉

pk
(x1

1:T ) =
∑

x2
1:T

pk(x
2
1:T |x

1
0, x

2
0)R(x1

1:T , x2
1:T )

=
T
∑

t=1

∑

x2
t

pk(x
2
t |x

1
0, x

2
0)Rt(x

1
t , x

2
t ) =

T
∑

t=1

〈

R1
t

〉

(x1
t )
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Dynamic stag hunt game

Initialize p0(x1:T |x
1
0, x

2
0) = q(x1:T |x

1
0, x

2
0) a random walk.

For k = 0, 1, 2, . . .
- Predict

〈

R1
t

〉

pk
(x1

t ), t = 1, . . . , T

- Compute pk+1(x
1
1:T |x

1
0, x

2
0)

End

....

............

TT-1T-20
x x x x

p p

RRRR R R
11 1 1

2 2

p p1 1
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Dynamic stag hunt game

T = 20, RStag = 0.1, RHare = 0.01, xStag = 12, xHare = 4. Brown=Hare; Blue=Stag
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Conclusions

Path integrals for non-LQG control problems
- relating inference and control

- connection to other work presented here

Efficient approximations through
- particle filters, MCMC

- deterministic approximations

Main research issues:
- partial observability

- (reinforcement) learning
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Conclusions

Nested beliefs recursion (’sophistication’)
- example of non-trivial multi-agent reasoning

- extension to moving targets (poster)

Main research issues:
- antagonist or non-symmetric case

- learning based on actual play (POMDP setting)
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