Super-Linear Convergence of Dual Augmented Lagrangian Algorithm for Sparse Learning

Ryota Tomioka¹, Taiji Suzuki¹, and Masashi Sugiyama²

¹University of Tokyo ²Tokyo Institute of Technology

2009-12-12 @ NIPS workshop OPT09

Objective

Develop an optimization algorithm for the optimization problem:

$$\underset{\pmb{w} \in \mathbb{R}^n}{\text{minimize}} \qquad \underbrace{f_{\ell}(\pmb{A}\pmb{w})}_{\text{loss}} + \underbrace{\phi_{\lambda}(\pmb{w})}_{\text{regularizer}}$$

For example, lasso:

$$\underset{\boldsymbol{w} \in \mathbb{R}^n}{\text{minimize}} \qquad \frac{1}{2} \|\boldsymbol{A}\boldsymbol{w} - \boldsymbol{y}\|^2 + \lambda \|\boldsymbol{w}\|_1.$$

- $\mathbf{A} \in \mathbb{R}^{m \times n}$: design matrix (m: #observations, n: #unknowns) .
- f_{ℓ} is convex and twice differentiable.
- $\phi_{\lambda}(\mathbf{w})$ is convex but possibly non-differentiable. $\eta \phi_{\lambda} = \phi_{\eta \lambda}$.
- We are interested in algorithms for general f_{ℓ} and ϕ_{λ} (\leftrightarrow LARS).

Where does the difficulty come from?

Conventional view: the non-differentiability of $\phi_{\lambda}(\mathbf{w})$.

- Upper bound the regularizer from above with a differentiable function.
 - FOCUSS (Rao & Kreutz-Delgado, 99)
 - Majorization-Minimization (Figueiredo et al., 07)
 - Iteratively reweighted least squares (IRLS).
- Explicitly handle the non-differentiability.
 - Sub-gradient L-BFGS (Andrew & Gao, 07; Yu et al., 08)

Our view: the coupling between variables introduced by **A**.

Where does the difficulty come from?

Our view: the coupling between variables introduced by A.

In fact, when $\mathbf{A} = \mathbf{I}_n$

$$\min_{\boldsymbol{w} \in \mathbb{R}^n} \left(\frac{1}{2} \|\boldsymbol{y} - \boldsymbol{w}\|_2^2 + \lambda \|\boldsymbol{w}\|_1 \right) = \sum_{j=1}^n \min_{w_j \in \mathbb{R}} \left(\frac{1}{2} (y_j - w_j)^2 + \lambda |w_j| \right).$$

$$\Rightarrow w_j^* = \operatorname{ST}_{\lambda}(y_j)$$

$$= \begin{cases} y_j - \lambda & (\lambda \leq y_j), \\ 0 & (-\lambda \leq y_j \leq \lambda), \\ y_j + \lambda & (y_j \leq -\lambda). \end{cases}$$

min is obtained analytically!

We focus on ϕ_{λ} for which the above min can be obtained analytically

Proximation wrt ϕ_{λ} can be computed analytically

Assumption

Proximation wrt ϕ_{λ} (soft-thresholding):

$$\mathrm{ST}_{\lambda}(oldsymbol{y}) = \operatorname*{argmin}_{oldsymbol{w} \in \mathbb{R}^n} \left(\phi_{\lambda}(oldsymbol{w}) + rac{1}{2} \|oldsymbol{y} - oldsymbol{w}\|_2^2
ight)$$

can be computed analytically.

Outline

- Introduction
 - Sparse regularized learning.
 - Why is it difficult? not the non-differentiability
- Methods
 - Iterative shrinkage-thresholding (IST)
 - Dual Augmented Lagrangian (porposed)
- Theoretical results: super-linear convergence
 - Exact inner minimization
 - Approximate inner minimization
- Empirical results
 - Comparison against OWLQN, SpaRSA, and FISTA.
- Summary

Iterative Shrinkage/Thresholding (IST)

Algorithm (Figueiredo&Nowak, 03; Daubechies et al., 04;...)

- Choose an initial solution \mathbf{w}^0 .
- 2 Repeat until some stopping criterion is satisfied:

$$m{w}^{t+1} \leftarrow \underbrace{\mathrm{ST}_{\eta_t \lambda}}_{\mathrm{shrink}} \Big(\underbrace{m{w}^t - \eta_t m{A}^ op \nabla f_\ell(m{A}m{w}^t)}_{\mathrm{gradient \ step}} \Big).$$

- Pro: easy to implement.
- Con: bad for poorly conditioned A.
- Also known as:
 - Forward-Backward Splitting [Combettes & Wajs, 05]
 - Thresholded Landweber Iteration [Daubechies et al., 04]

Iterative Shrinkage/Thresholding (IST)

Algorithm (Figueiredo&Nowak, 03; Daubechies et al., 04;...)

- Choose an initial solution \mathbf{w}^0 .
- Repeat until some stopping criterion is satisfied:

$$\mathbf{w}^{t+1} \leftarrow \underbrace{\mathrm{ST}_{\eta_t \lambda}}_{\mathrm{shrink}} \Big(\underbrace{\mathbf{w}^t - \eta_t \mathbf{A}^\top \nabla f_\ell(\mathbf{A} \mathbf{w}^t)}_{\mathrm{gradient \ step}} \Big).$$

- Pro: easy to implement.
- Con: bad for poorly conditioned A.
- Also known as:
 - Forward-Backward Splitting [Combettes & Wajs, 05]
 - Thresholded Landweber Iteration [Daubechies et al., 04]

Dual Augmented Lagrangian (DAL) method

Primal problem

minimize
$$\underbrace{f_{\ell}(\mathbf{A}\mathbf{w}) + \phi_{\lambda}(\mathbf{w})}_{f(\mathbf{w})}$$

Proximal minimization:

$$\mathbf{w}^{t+1} = \underset{\mathbf{w}}{\operatorname{argmin}} \left(f(\mathbf{w}) + \frac{1}{2\eta_t} \|\mathbf{w} - \mathbf{w}^t\|^2 \right)$$

$$(\eta_0 \le \eta_1 \le \cdots)$$

- Easy to analyze.
- $f(\mathbf{w}^{t+1}) + \frac{1}{2n_t} ||\mathbf{w}^{t+1} \mathbf{w}^t||^2 \le f(\mathbf{w}^t).$
- Not practical! (as difficult as the original problem)

Dual problem

$$\label{eq:maximize} \begin{aligned} \underset{\boldsymbol{\alpha}, \boldsymbol{\nu}}{\text{maximize}} & & -f_{\ell}^*(-\boldsymbol{\alpha}) - \phi_{\lambda}^*(\boldsymbol{\nu}) \\ \text{s.t.} & & \boldsymbol{\nu} = \boldsymbol{A}^{\top} \boldsymbol{\alpha} \end{aligned}$$

⇔Augmented Lagrangiar (Tomioka & Sugiyama, 09):

$$m{w}^{t+1} = \mathrm{ST}_{\lambda\eta_t}(m{w}^t + \eta_t m{A}^ op lpha^t) \ m{lpha}^t = \operatorname*{argmin}_{m{lpha}} m{arphi}_t(m{lpha})$$

- Minimization of $\varphi_t(\alpha)$ is easy (smooth).
- Step-size η_t is increased.
- See Rockafellar 76 for the equivalence.

Dual Augmented Lagrangian (DAL) method

Primal problem

$$\underset{\boldsymbol{w}}{\text{minimize}} \quad \underbrace{f_{\ell}(\boldsymbol{A}\boldsymbol{w}) + \phi_{\lambda}(\boldsymbol{w})}_{f(\boldsymbol{w})}$$

Proximal minimization:

$$\mathbf{w}^{t+1} = \underset{\mathbf{w}}{\operatorname{argmin}} \left(f(\mathbf{w}) + \frac{1}{2\eta_t} ||\mathbf{w} - \mathbf{w}^t||^2 \right)$$

$$(\eta_0 \leq \eta_1 \leq \cdots)$$

- Easy to analyze.
- $f(\mathbf{w}^{t+1}) + \frac{1}{2n_t} ||\mathbf{w}^{t+1} \mathbf{w}^t||^2 \le f(\mathbf{w}^t).$
- Not practical! (as difficult as the original problem)

Dual problem

$$\begin{array}{ll} \underset{\boldsymbol{\alpha}, \boldsymbol{\nu}}{\text{maximize}} & -f_{\ell}^*(-\boldsymbol{\alpha}) - \phi_{\lambda}^*(\boldsymbol{\nu}) \\ \text{s.t.} & \boldsymbol{\nu} = \boldsymbol{A}^{\top} \boldsymbol{\alpha} \end{array}$$

⇒Augmented Lagrangian (Tomioka & Sugiyama, 09):

$$m{w}^{t+1} = \mathrm{ST}_{\lambda\eta_t}(m{w}^t + \eta_t m{A}^{ op} m{lpha}^t)$$
 $m{lpha}^t = \operatorname*{argmin}_{m{lpha}} m{arphi}_t(m{lpha})$

- Minimization of $\varphi_t(\alpha)$ is easy (smooth).
- Step-size η_t is increased.
- See Rockafellar 76 for the equivalence.

Dual Augmented Lagrangian (DAL) method

Primal problem

minimize
$$\underbrace{f_{\ell}(\boldsymbol{A}\boldsymbol{w}) + \phi_{\lambda}(\boldsymbol{w})}_{f(\boldsymbol{w})}$$

Proximal minimization:

$$\mathbf{w}^{t+1} = \underset{\mathbf{w}}{\operatorname{argmin}} \left(f(\mathbf{w}) + \frac{1}{2\eta_t} \|\mathbf{w} - \mathbf{w}^t\|^2 \right)$$

$$(\eta_0 \leq \eta_1 \leq \cdots)$$

- Easy to analyze.
- $f(\mathbf{w}^{t+1}) + \frac{1}{2n_t} ||\mathbf{w}^{t+1} \mathbf{w}^t||^2 \le f(\mathbf{w}^t).$
- Not practical! (as difficult as the original problem)

Dual problem

$$\begin{array}{ll} \underset{\boldsymbol{\alpha}, \mathbf{v}}{\mathsf{maximize}} & -f_{\ell}^*(-\boldsymbol{\alpha}) - \phi_{\lambda}^*(\mathbf{v}) \\ \\ \mathsf{s.t.} & \mathbf{v} = \mathbf{A}^{\top} \boldsymbol{\alpha} \end{array}$$

⇒Augmented Lagrangian (Tomioka & Sugiyama, 09):

$$m{w}^{t+1} = \mathrm{ST}_{\lambda\eta_t}(m{w}^t + \eta_tm{A}^ opm{lpha}^t) \ m{lpha}^t = \mathop{\mathrm{argmin}}_{m{lpha}} m{arphi}_t(m{lpha})$$

- Minimization of $\varphi_t(\alpha)$ is easy (smooth).
- Step-size η_t is increased.
- See Rockafellar 76 for the equivalence.

Difference: How do we get rid of the couplings?

Proximation wrt f is hard: $\mathbf{w}^{t+1} = \underset{\mathbf{w}}{\operatorname{argmin}} \underbrace{ \underbrace{ f(\mathbf{w}) }_{\mathbf{variables \ are \ coupled}} + \phi_{\lambda}(\mathbf{w}) }_{\mathbf{variables \ are \ coupled}} + \underbrace{ \frac{1}{2\eta_t} \|\mathbf{w} - \mathbf{w}^t\|^2 }_{\mathbf{variables \ are \ coupled}} .$

• IST: linearly approximates the loss term:

$$f_{\ell}(\boldsymbol{A}\boldsymbol{w}) \simeq f_{\ell}(\boldsymbol{A}\boldsymbol{w}^t) + (\boldsymbol{w} - \boldsymbol{w}^t)^{\top} \boldsymbol{A}^{\top} \nabla f_{\ell}(\boldsymbol{A}\boldsymbol{w}^t)$$

- \rightarrow tightest at the current point w^t
- DAL (proposed): linearly lower-bounds the loss term:

$$f_{\ell}(\boldsymbol{A}\boldsymbol{w}) = \max_{\alpha \in \mathbb{R}^m} \left(-f_{\ell}^*(-\alpha) - \boldsymbol{w}^{\top} \boldsymbol{A}^{\top} \alpha \right)$$

 \rightarrow tightest at the next point \mathbf{w}^{t+1}

Difference: How do we get rid of the couplings?

Proximation wrt
$$f$$
 is hard:
$$\mathbf{w}^{t+1} = \underset{\mathbf{w}}{\operatorname{argmin}} \left(\underbrace{ f_{\ell}(\mathbf{A}\mathbf{w}) }_{\text{variables are coupled}} + \phi_{\lambda}(\mathbf{w}) + \frac{1}{2\eta_{t}} \|\mathbf{w} - \mathbf{w}^{t}\|^{2} \right).$$

• IST: linearly approximates the loss term:

$$f_{\ell}(\boldsymbol{A}\boldsymbol{w}) \simeq f_{\ell}(\boldsymbol{A}\boldsymbol{w}^t) + (\boldsymbol{w} - \boldsymbol{w}^t)^{\top} \boldsymbol{A}^{\top} \nabla f_{\ell}(\boldsymbol{A}\boldsymbol{w}^t)$$

- \rightarrow tightest at the current point \mathbf{w}^t
- DAL (proposed): linearly lower-bounds the loss term:

$$f_{\ell}(\boldsymbol{A}\boldsymbol{w}) = \max_{\boldsymbol{\alpha} \in \mathbb{R}^m} \left(-f_{\ell}^*(-\boldsymbol{\alpha}) - \boldsymbol{w}^{\top} \boldsymbol{A}^{\top} \boldsymbol{\alpha} \right)$$

 \rightarrow tightest at the next point \mathbf{w}^{t+1}

Difference: How do we get rid of the couplings?

Proximation wrt f is hard: $\mathbf{w}^{t+1} = \underset{\mathbf{w}}{\operatorname{argmin}} \left(\underbrace{ f_{\ell}(\mathbf{A}\mathbf{w}) }_{\text{variables are coupled}} + \phi_{\lambda}(\mathbf{w}) + \frac{1}{2\eta_t} \|\mathbf{w} - \mathbf{w}^t\|^2 \right).$

• IST: linearly approximates the loss term:

$$f_{\ell}(\boldsymbol{A}\boldsymbol{w}) \simeq f_{\ell}(\boldsymbol{A}\boldsymbol{w}^t) + (\boldsymbol{w} - \boldsymbol{w}^t)^{\top} \boldsymbol{A}^{\top}
abla f_{\ell}(\boldsymbol{A}\boldsymbol{w}^t)$$

- \rightarrow tightest at the current point \mathbf{w}^t
- DAL (proposed): linearly lower-bounds the loss term:

$$f_{\ell}(oldsymbol{A}oldsymbol{w}) = \max_{oldsymbol{lpha} \in \mathbb{R}^m} \left(-f_{\ell}^*(-lpha) - oldsymbol{w}^ op oldsymbol{A}^ op oldsymbol{lpha}
ight)$$

 \rightarrow tightest at the next point \mathbf{w}^{t+1}

Numerical examples

DAL is better when **A** is poorly conditioned.

10/22

Theorem 1 (exact minimization)

Definition

- \mathbf{w}^t : sequence generated by the DAL algorithm with $\|\nabla \varphi_t(\alpha^t)\| = 0$ (exact minimization).
- w*: the unique minimizer of the objective f.

Assumption

There is a constant σ such that

$$f(\mathbf{w}^{t+1}) - f(\mathbf{w}^*) \ge \sigma \|\mathbf{w}^{t+1} - \mathbf{w}^*\|^2 \quad (t = 0, 1, 2, \ldots).$$

Theorem 1

$$\|\mathbf{w}^{t+1} - \mathbf{w}^*\| \le \frac{1}{1 + \sigma n_t} \|\mathbf{w}^t - \mathbf{w}^*\|.$$

I.e., \mathbf{w}^t converges super-linearly to \mathbf{w}^* if η_t is increasing.

Theorem 2 (approximate minimization)

Definition

• wt: sequence generated by the DAL algorithm with

$$\|\nabla \varphi_t(\boldsymbol{\alpha}^t)\| \leq \sqrt{\frac{\gamma}{\eta_t}} \|\boldsymbol{w}^{t+1} - \boldsymbol{w}^t\| \quad \left(\begin{array}{c} 1/\gamma \colon \text{ Lipschitz constant of } \nabla f_\ell. \end{array} \right)$$

Theorem 2

Under the same assumption as in Theorem 1,

$$\| \mathbf{w}^{t+1} - \mathbf{w}^* \| \leq \frac{1}{\sqrt{1 + 2\sigma \eta_t}} \| \mathbf{w}^t - \mathbf{w}^* \|.$$

I.e., \mathbf{w}^t converges super-linearly to \mathbf{w}^* if η_t is increasing.

Note

- Convergence is slower than the exact case $(\|\nabla \varphi_t(\alpha^t)\| = 0)$.
- A faster rate can be obtained if we choose $\frac{\|\nabla \varphi_t(\alpha^t)\|}{\|\mathbf{w}^{t+1} \mathbf{w}^t\|} \leq O(1/\eta_t)$.

Theorem 2 (approximate minimization)

Definition

• wt: sequence generated by the DAL algorithm with

$$\|\nabla \varphi_t(\boldsymbol{\alpha}^t)\| \leq \sqrt{\frac{\gamma}{\eta_t}} \|\boldsymbol{w}^{t+1} - \boldsymbol{w}^t\| \quad \left(\begin{array}{c} 1/\gamma \colon \text{ Lipschitz constant of } \nabla f_\ell. \end{array} \right)$$

Theorem 2

Under the same assumption as in Theorem 1,

$$\|\mathbf{w}^{t+1} - \mathbf{w}^*\| \le \frac{1}{\sqrt{1 + 2\sigma \eta_t}} \|\mathbf{w}^t - \mathbf{w}^*\|.$$

I.e., \mathbf{w}^t converges super-linearly to \mathbf{w}^* if η_t is increasing.

Note

- Convergence is slower than the exact case $(\|\nabla \varphi_t(\alpha^t)\| = 0)$.
- A faster rate can be obtained if we choose $\frac{\|\nabla \varphi_t(\alpha^t)\|}{\|\mathbf{w}^{t+1} \mathbf{w}^t\|} \leq O(1/\eta_t)$.

Proof (in essence) of Theorem 1

Since
$$\mathbf{w}^{t+1} = \operatorname{argmin}_{\mathbf{w}} \left(f(\mathbf{w}) + \frac{1}{2\eta_t} || \mathbf{w} - \mathbf{w}^t ||^2 \right)$$
, $(\mathbf{w}^t - \mathbf{w}^{t+1})/\eta_t \in \partial f(\mathbf{w}^{t+1})$ (is a subgradient of f). I.e.,

$$f(\mathbf{w}^*) - f(\mathbf{w}^{t+1}) \ge \left\langle (\mathbf{w}^t - \mathbf{w}^{t+1})/\eta_t, \mathbf{w}^* - \mathbf{w}^{t+1} \right\rangle.$$

(inspired by Beck & Teboulle 09)

Proof (in essence) of Theorem 2

$$f(\mathbf{w}^*) - f(\mathbf{w}^{t+1}) \ge \left\langle (\mathbf{w}^t - \mathbf{w}^{t+1})/\eta_t, \mathbf{w}^* - \mathbf{w}^{t+1} \right\rangle - \frac{1}{2\gamma} \|\nabla \varphi_t(\alpha^t)\|^2.$$

cost of approximate minimization

$1/\gamma$: Lipschitz constant of ∇f_{ℓ} .

Empirical results: ℓ_1 -logistic regression

#samples=1,024, #unknowns=16,384.

- FISTA
- Two-step IST (Beck & Teboulle 09)
 - OWLQN

Orthant-wise L-BFGS (Andrew & Gao 07)

SpaRSA

Step-size improved IST (Wright et al. 09)

- Why is sparse learning difficult to optimize? couplings
 - Non-differentiability is not bad.
 - Cost of inner minimization $O(m^2n^+)$ (n^+ : number of active variables). Sparsity makes inner minimization efficient.
- How do we get rid of the couplings?
 - Use linear parametric lower bound instead of linear approximation.
- Super-linear convergence for exact/approximate inner minimization.
 - Improved a classic result in optimization by specializing the setting to sparse learning; i.e., proximation wrt ϕ_{λ} can be performed analytically.
- Empirical results are promissing.
 - Faster than OWLQN, SpaRSA, and FISTA with the potential to be generalized further.

- Why is sparse learning difficult to optimize? couplings
 - Non-differentiability is not bad.
 - Cost of inner minimization $O(m^2n^+)$ (n^+ : number of active variables). Sparsity makes inner minimization efficient.
- How do we get rid of the couplings?
 - Use linear parametric lower bound instead of linear approximation.
- Super-linear convergence for exact/approximate inner minimization.
 - Improved a classic result in optimization by specializing the setting to sparse learning; i.e., proximation wrt ϕ_{λ} can be performed analytically.
- Empirical results are promissing.
 - Faster than OWLQN, SpaRSA, and FISTA with the potential to be generalized further.

- Why is sparse learning difficult to optimize? couplings
 - Non-differentiability is not bad.
 - Cost of inner minimization $O(m^2n^+)$ (n^+ : number of active variables). Sparsity makes inner minimization efficient.
- How do we get rid of the couplings?
 - Use linear parametric lower bound instead of linear approximation.
- Super-linear convergence for exact/approximate inner minimization.
 - Improved a classic result in optimization by specializing the setting to sparse learning; i.e., proximation wrt ϕ_{λ} can be performed analytically.
- Empirical results are promissing.
 - Faster than OWLQN, SpaRSA, and FISTA with the potential to be generalized further.

- Why is sparse learning difficult to optimize? couplings
 - Non-differentiability is not bad.
 - Cost of inner minimization $O(m^2n^+)$ (n^+ : number of active variables). Sparsity makes inner minimization efficient.
- How do we get rid of the couplings?
 - Use linear parametric lower bound instead of linear approximation.
- Super-linear convergence for exact/approximate inner minimization.
 - Improved a classic result in optimization by specializing the setting to sparse learning; i.e., proximation wrt ϕ_{λ} can be performed analytically.
- Empirical results are promissing.
 - Faster than OWLQN, SpaRSA, and FISTA with the potential to be generalized further.

(1) Proximation wrt ϕ_{λ} is analytic (though non-smooth):

$$oldsymbol{w}^{t+1} = \operatorname{ST}_{\eta_t \lambda} \left(oldsymbol{w}^t + \eta_t oldsymbol{A}^ op oldsymbol{lpha}^t
ight)$$

(2) Inner minimization is smooth:

$$lpha^t = \mathop{\mathrm{argmin}}_{oldsymbol{lpha} \in \mathbb{R}^m} \Big(\underbrace{ f_\ell^*(-lpha)}_{ ext{independent of } oldsymbol{A}.}$$

$$\boldsymbol{\alpha}^t = \underset{\boldsymbol{\alpha} \in \mathbb{R}^m}{\text{argmin}} \Big(\underbrace{ \underbrace{f_\ell^*(-\alpha)}_{\text{independent of } \boldsymbol{A}}}_{\text{independent of } \boldsymbol{A}} + \frac{1}{2\eta_t} \underbrace{ \| \mathrm{ST}_{\eta_t \lambda} (\boldsymbol{w}^t + \eta_t \boldsymbol{A}^\top \alpha) \|_2^2 }_{= \Phi_\lambda^*(\cdot)} \Big)$$

(linear to the number of

Comparison to other algorithms

- DAL (this talk) $\|\mathbf{w}^k - \mathbf{w}^*\| = O(\exp(-k))$
- SpaRSA (Step-size improved IST)
 Convergence shown but no rate given. (Wright et al. 09)
- OWLQN (Orthant-wise L-BFGS)
 Convergence shown but no rate given. (Andrew & Gao 07)
- IST (Iterative Soft-thresholding) $f(\mathbf{w}^k) f(\mathbf{w}^*) = O(1/k)$ (Beck & Teboulle 09)
- FISTA (Two-step IST) $f(\mathbf{w}^k) - f(\mathbf{w}^*) = O(1/k^2)$ (Beck & Teboulle 09)

Comparison to Rockafellar 76

Assumption

The multifunction ∇f^* is (locally) Lipschitz continuous at the origin:

$$\|\nabla f^*(\boldsymbol{\beta}) - \nabla f^*(\mathbf{0})\| \le L\|\boldsymbol{\beta}\| \quad (\|\boldsymbol{\beta}\| \le \tau)$$

 \Rightarrow Implies our assumption with $\sigma = \frac{1}{2} \min(1/L, \tau/||\mathbf{w}^0 - \mathbf{w}^*||)$.

Convergence (exact minimization) – comparable to Thm 1

$$\|\mathbf{w}^{t+1} - \mathbf{w}^*\| \le \frac{1}{\sqrt{1 + (\eta_t/L)^2}} \|\mathbf{w}^t - \mathbf{w}^*\|$$

Convergence (approximate minimization) – much worse than Thm 2

$$\|\mathbf{w}^{t+1} - \mathbf{w}^*\| \le \frac{\mu_t + \epsilon_t}{1 - \epsilon_t} \|\mathbf{w}^t - \mathbf{w}^*\| \quad \left(\mu_t = \frac{1}{\sqrt{1 + (\eta_t/L)^2}}\right)$$

(assuming
$$\|\nabla \varphi_t\| \leq \epsilon_t \sqrt{\gamma/\eta_t} \|\boldsymbol{w}^{t+1} - \boldsymbol{w}^t\|$$
)

Ryota Tomioka (Univ Tokyo)

• Since $\mathbf{w}^{t+1} = \operatorname{argmin}_{\mathbf{w}} \left(f(\mathbf{w}) + \frac{1}{2\eta_t} \|\mathbf{w} - \mathbf{w}^t\|^2 \right)$, $(\mathbf{w}^t - \mathbf{w}^{t+1})/\eta_t$ is a subgradient of f at \mathbf{w}^{t+1} . I.e., $f(\mathbf{w}^*) - f(\mathbf{w}^{t+1}) \ge \left\langle (\mathbf{w}^t - \mathbf{w}^{t+1})/\eta_t, \mathbf{w}^* - \mathbf{w}^{t+1} \right\rangle.$

② For any $\mu > 0$,

$$\|\mathbf{w}^* - \mathbf{w}^{t+1}\| \|\mathbf{w}^t - \mathbf{w}^*\| \le \frac{\mu}{2} \|\mathbf{w}^* - \mathbf{w}^{t+1}\|^2 + \frac{1}{2\mu} \|\mathbf{w}^t - \mathbf{w}^*\|^2.$$

o Combining 1 & 2 and using $f(\mathbf{w}^{t+1}) - f(\mathbf{w}^*) \ge \sigma \|\mathbf{w}^{t+1} - \mathbf{w}^*\|^2$,

$$\frac{1}{2} \| \mathbf{w}^t - \mathbf{w}^* \|^2 \ge ((1 + \sigma \eta_t) \mu - \frac{\mu^2}{2}) \| \mathbf{w}^{t+1} - \mathbf{w}^* \|^2.$$

Maximize RHS wrt μ.

 $\begin{aligned} \textbf{Since } & \boldsymbol{w}^{t+1} = \operatorname{argmin}_{\boldsymbol{w}} \left(f(\boldsymbol{w}) + \frac{1}{2\eta_t} \| \boldsymbol{w} - \boldsymbol{w}^t \|^2 \right), \\ & (\boldsymbol{w}^t - \boldsymbol{w}^{t+1}) / \eta_t \text{ is a subgradient of } f \text{ at } \boldsymbol{w}^{t+1}. \text{ I.e.,} \\ & f(\boldsymbol{w}^*) - f(\boldsymbol{w}^{t+1}) \geq \left\langle (\boldsymbol{w}^t - \boldsymbol{w}^{t+1}) / \eta_t, \boldsymbol{w}^* - \boldsymbol{w}^{t+1} \right\rangle. \end{aligned}$

② For any $\mu > 0$,

$$\|\mathbf{w}^* - \mathbf{w}^{t+1}\| \|\mathbf{w}^t - \mathbf{w}^*\| \le \frac{\mu}{2} \|\mathbf{w}^* - \mathbf{w}^{t+1}\|^2 + \frac{1}{2\mu} \|\mathbf{w}^t - \mathbf{w}^*\|^2.$$

3 Combining 1 & 2 and using $f(\mathbf{w}^{t+1}) - f(\mathbf{w}^*) \ge \sigma \|\mathbf{w}^{t+1} - \mathbf{w}^*\|^2$,

$$\frac{1}{2}\|\mathbf{w}^t - \mathbf{w}^*\|^2 \ge ((1 + \sigma \eta_t)\mu - \frac{\mu^2}{2})\|\mathbf{w}^{t+1} - \mathbf{w}^*\|^2.$$

Maximize RHS wrt μ.

 $\begin{aligned} \textbf{Since } & \boldsymbol{w}^{t+1} = \operatorname{argmin}_{\boldsymbol{w}} \left(f(\boldsymbol{w}) + \frac{1}{2\eta_t} \| \boldsymbol{w} - \boldsymbol{w}^t \|^2 \right), \\ & (\boldsymbol{w}^t - \boldsymbol{w}^{t+1}) / \eta_t \text{ is a subgradient of } f \text{ at } \boldsymbol{w}^{t+1}. \text{ I.e.,} \\ & f(\boldsymbol{w}^*) - f(\boldsymbol{w}^{t+1}) \geq \left\langle (\boldsymbol{w}^t - \boldsymbol{w}^{t+1}) / \eta_t, \boldsymbol{w}^* - \boldsymbol{w}^{t+1} \right\rangle. \end{aligned}$

② For any $\mu > 0$,

$$\|\mathbf{w}^* - \mathbf{w}^{t+1}\| \|\mathbf{w}^t - \mathbf{w}^*\| \le \frac{\mu}{2} \|\mathbf{w}^* - \mathbf{w}^{t+1}\|^2 + \frac{1}{2\mu} \|\mathbf{w}^t - \mathbf{w}^*\|^2.$$

3 Combining 1 & 2 and using $f(\mathbf{w}^{t+1}) - f(\mathbf{w}^*) \ge \sigma ||\mathbf{w}^{t+1} - \mathbf{w}^*||^2$,

$$\frac{1}{2}\|\mathbf{w}^{t}-\mathbf{w}^{*}\|^{2} \geq ((1+\sigma\eta_{t})\mu - \frac{\mu^{2}}{2})\|\mathbf{w}^{t+1}-\mathbf{w}^{*}\|^{2}.$$

Maximize RHS wrt μ.

 $\bullet \ \mathsf{Let} \ \boldsymbol{\delta}^t := \nabla \varphi_t(\boldsymbol{\alpha}^t),$

$$f(\mathbf{w}^*) - f(\mathbf{w}^{t+1}) \ge \left\langle (\mathbf{w}^t - \mathbf{w}^{t+1})/\eta_t, \mathbf{w}^* - \mathbf{w}^{t+1} \right\rangle - \frac{1}{2\gamma} \|\boldsymbol{\delta}^t\|^2.$$

By assumption

$$f(\mathbf{w}^{t+1}) - f(\mathbf{w}^*) \ge \sigma \|\mathbf{w}^{t+1} - \mathbf{w}^*\|^2,$$

 $\|\mathbf{\delta}^t\|^2 \le \frac{\gamma}{\eta_t} \|\mathbf{w}^{t+1} - \mathbf{w}^t\|^2.$

Ombining 1 & 2,

$$\frac{1}{2}\|\mathbf{w}^* - \mathbf{w}^t\|^2 \ge (\sigma\eta_t + \frac{1}{2})\|\mathbf{w}^* - \mathbf{w}^{t+1}\|^2.$$

EEG problem – P300 visual speller dataset (subject A)

- Number of samples m = 2550.
- 6 class classification.
- $\mathbf{w} \in \mathbb{R}^{37 \times 64}$.
- Trace-norm regularization.

