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Introduction
Objective

Develop an optimization algorithm for the optimization problem:

minimize fo(Aw) + ox(w) .

weR”" ———r ——r
loss regularizer
For example, lasso:
minimize 1 AW — y|? + \|w|
WER? 2 y I

@ A € R™*™: design matrix (m: #observations, n: #unknowns)O

@ f; is convex and twice differentiable.

@ ¢,(w) is convex but possibly non-differentiable. n¢y = ¢px.

@ We are interested in algorithms for general f, and ¢, (<« LARS).
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Introduction

Where does the difficulty come from?

Conventional view. the non-differentiability of ¢ (w).

@ Upper bound the regularizer from above
with a differentiable function.
e FOCUSS
(Rao & Kreutz-Delgado, 99)
o Majorization-Minimization (Figueiredo et

al., 07)
o lteratively reweighted least squares
(IRLS).

@ Explicitly handle the non-differentiability.

e Sub-gradient L-BFGS (Andrew & Gao,
07; Yu et al., 08)

Our view: the coupling between variables introduced by A.
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Introduction

Where does the difficulty come from?

Our view: the coupling between variables introduced by A.
In fact, when A= 1,

n

(1 » B (1, |
i, (31— wig + Nwli ) = > min (307~ w)? + Alw))
= W =STA()

yi=A (A<y),
=40 (A<y < A), ,
Vit A (< =A). R
min is obtained analytically!

We focus on ¢, for which the above min can be obtained analytically

Ryota Tomioka (Univ Tokyo) DAL 2009-12-12 4/22



Introduction

Proximation wrt ¢, can be computed analytically

Proximation wrt ¢, (soft-thresholding):

weR”

STA(y) = argmin (,(w) + gy - wi3)

can be computed analytically.
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Introduction
Outline

@ Introduction

@ Sparse regularized learning.
e Why is it difficult? not the non-differentiability

@ Methods

o lterative shrinkage-thresholding (IST)
e Dual Augmented Lagrangian (porposed)

© Theoretical results: super-linear convergence

e Exact inner minimization
@ Approximate inner minimization

© Empirical results
o Comparison against OWLQN, SpaRSA, and FISTA.

@ Summary
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Methods

lterative Shrinkage/Thresholding (IST)

Algorithm (Figueiredo&Nowak, 03; Daubechies et al., 04;...)
@ Choose an initial solution wP.
©@ Repeat until some stopping criterion is satisfied:
WtJr1 — STm)\ (Wt = ’mATVfg(AWt)> o
N / \\- -,

shrink gradient step

T y,
TSSOSO

@ Pro: easy to implement. ‘
@ Con: bad for poorly conditioned A. TS

R e

@ Also known as: ;;;;;g;‘;g&:
o Forward-Backward Splitting jjjjjjj\i}g\g
[Combettes & Wajs, 05] jjjjjjjjj‘
e Thresholded Landweber Iteration y”j;;jjjj

[Daubechies et al., 04] SSSeletetets
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v N ~~ -,

shrink gradient step

@ Pro: easy to implement.
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NN

<

AN ’
@ Also known as: RS AGSAN
o Forward-Backward Splitting NN
[Combettes & Wajs, 05] ARSI SN
e Thresholded Landweber lteration GOLLL0 00T
[Daubechies et al., 04] NN AR
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Methods

Dual Augmented Lagrangian (DAL) method

Primal problem Dual problem

miniMr,nize fo(AW) + ¢r(w) maxiryize — fj(—a) — $3(V)

fw) st. v=ATa

V.
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Methods

Dual Augmented Lagrangian (DAL) method

Primal problem

miniMr,nize fo(AW) + ¢r(w)

f(w)

Proximal minimization:
. 1
w't! = argmin (f(w) + —|w-—w
w 2n;

(mo<m<---)
@ Easy to analyze.

[+ f(wt+1) + 2+It||wt+1 _ Wt||2 < f(Wt).

@ Not practical! (as difficult as
the original problem)

2
|

Dual problem

maximize  — f;(—a) — ¢3(v)

st. v=ATa
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Methods

Dual Augmented Lagrangian (DAL) method

Primal problem

miniMr,nize fo(AW) + ¢r(w)

f(w)

Proximal minimization:
. 1
w't! = argmin (f(w) + —|w-—w
w 2n;

(o <m <---)
@ Easy to analyze.

[+ f(wt+1) + 2+It||wt+1 _ Wt||2 < f(Wt).

@ Not practical! (as difficult as
the original problem)

2
|

Dual problem
maximize  — f;(—a) — ¢3(v)
st. v=ATa

<Augmented Lagrangian
(Tomioka & Sugiyama, 09):
WH—1 _ ST)\m(Wt + ntATal‘)
o' = argmin ()
@

@ Minimization of ¢¢(«) is easy
(smooth).

@ Step-size n; is increased.

@ See Rockafellar 76 for the equivalence.
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Difference: How do we get rid of the couplings?

Proximation wrt f is hard: f(w)
wit! = argmin( fl(Aw) +oa(w) +LHW - WtHz>-
w SN—— 2771

variables are coupled

Ryota Tomioka (Univ Tokyo) DAL 2009-12-12 9/22



Difference: How do we get rid of the couplings?

Proximation wrt f is hard: f(w) ]
w —argmin(” f(AW)  oa(w) 45w - W),
w SN—— 2771

variables are coupled
@ IST: linearly approximates the loss term:
f,(Aw) ~ f,(Aw!) + (w — w))T ATV, (Aw?)

— tightest at the current point w! I

1 T

Ryota Tomioka (Univ Tokyo) DAL 2009-12-12 9/22



Difference: How do we get rid of the couplings?

Proximation wrt f is hard: f(w) ]
w —argmin(” f(AW)  oa(w) 45w - W),
w SN—— 2ﬁt

variables are coupled
@ IST: linearly approximates the loss term:

f,(Aw) ~ f,(Aw!) + (w — w))T ATV, (Aw?)

— tightest at the current point w! A :
1 T
@ DAL (proposed): linearly lower-bounds the weew
loss term:

f,(Aw) = max <—fg*(—a) - WTATa)

acRM

— tightest at the next point w!*’ T

+ —t
W W

Ryota Tomioka (Univ Tokyo) DAL 2009-12-12 9/22



T
DAL

IS

SRR

¥

SRS
Lsfrm e A

DAL is better when A is poorly conditioned.

(%9}
Q@
o
S
<
x
)
'©
Q
S
[}
S
=)
Z




Theoretical results

Theorem 1 (exact minimization)

@ w': sequence generated by the DAL algorithm with
[Ver(al)|| = 0 (exact minimization).
@ w*: the unique minimizer of the objective f.

| \

Assumption
There is a constant o such that

FwHT) — f(w*) > of|w!™ — w2 (t=0,1,2,...).

Theorem 1

|
\

W — W) < lw' — w|.

1+ on;

l.e., w! converges super-linearly to w* if 7; is increasing.

.
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Theoretical results

Theorem 2 (approximate minimization)

Definition

@ w': sequence generated by the DAL algorithm with

1/~: Lipschitz con-
< t+1 t
[Ver(at)] < /2w —w| (stamofw.

Theorem 2
Under the same assumption as in Theorem 1,

|

1
W™ —w| < Ve

\/1+2

l.e., w! converges super-linearly to w* if n; is increasing.

L w.

4
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Theoretical results

Theorem 2 (approximate minimization)

Definition
@ w': sequence generated by the DAL algorithm with

[Ver(ad)| < \/Z||Wt+1 —wl| ( 1/~: Lipschitz con- )
- i

stant of V#,.

Theorem 2
Under the same assumption as in Theorem 1,

|

It —w| < lw' —w.

1
\/1 aF 20771L
l.e., w! converges super-linearly to w* if 7; is increasing.
Note

@ Convergence is slower than the exact case (||V¢(al)| = 0).

@ A faster rate can be obtained if we choose m;ﬂi% < O(1/ny).

4
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Proof (in essence) of Theorem 1

Since w*" = argmin,, (f(w) + oL, | w — w|2),
(wh — wit) /n; € of(w'T) (is a subgradient of f). l.e.,

f(W*) . f(wl‘+1) > <(Wt - Wt+1 )/nt’ wr — wt+1> )

(inspired by Beck & Teboulle 09)

/: WD :Wt+l
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Proof (in essence) of Theorem 2

>k * 1
fw) = ) > (W' = w) /g, w = witl) o[ T P

cost of approximate
minimization

1/~: Lipschitz constant of V1.

O WI+1
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Empirical results

Empirical results: /1-logistic regression

#samples=1, 024, #unknowns=16, 384.

@ FISTA

o b —e— DAL s
Two-step IST (Beck I
& Teboulle 09) 5o i
E SpaRSA
e OWLQN

Ol"th ant-Wi se 10° 10' 10° 10° 10* 10° 10' 10°
L-BFGS (Andrew &

10° 10°
Gao 07) , s
10 10
@ SpaRSA S0’ w0
Step-size improved =, o pareh
IST (Wright et al. 09) - T oo
10° 10° 10° 10° 10' 10° ‘
#iteretions CPU time (sec)
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Summary
Summary

@ Why is sparse learning difficult to optimize? — couplings
o Non-differentiability is not bad.
e Cost of inner minimization O(m?n*) (n*: number of active
variables). Sparsity makes inner minimization efficient.
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@ Super-linear convergence for exact/approximate inner
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Summary
Summary

@ Why is sparse learning difficult to optimize? — couplings
o Non-differentiability is not bad.
e Cost of inner minimization O(m?n*) (n*: number of active
variables). Sparsity makes inner minimization efficient.

@ How do we get rid of the couplings?
e Use linear parametric lower bound instead of linear approximation.

@ Super-linear convergence for exact/approximate inner
minimization.
e Improved a classic result in optimization by specializing the setting
to sparse learning; i.e., proximation wrt ¢, can be performed
analytically.

@ Empirical results are promissing.

o Faster than OWLQN, SpaRSA, and FISTA with the potential to be
generalized further.
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Appendix

(1) Proximation wrt ¢, is analytic (though non-smooth):
w't = ST\ (wt + n,ATa’>

(2) Inner minimization is smooth:

1
t ; t T 2
ol =agmin( fi(-a) 45 [STya(W +nAT@)|})
acERM S—— Ui -
independent of A. =o5()
(linear to the number of
active variables)

o W) P w)

-A 0 A
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Comparison to other algorithms

@ DAL (this talk)
Iwk — w|| = O(exp(—k))

@ SpaRSA (Step-size improved IST)
Convergence shown but no rate given. (Wright et al. 09)

@ OWLQN (Orthant-wise L-BFGS)
Convergence shown but no rate given. (Andrew & Gao 07)

@ IST (lterative Soft-thresholding)
f(wk) — f(w*) = O(1/k) (Beck & Teboulle 09)

@ FISTA (Two-step IST)
f(wX) — f(w*) = O(1/k?) (Beck & Teboulle 09)
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Comparison to Rockafellar 76

Assumption
The multifunction Vf* is (locally) Lipschitz continuous at the origin:

IVE(8) = V) < LIl (I8l <7)

= Implies our assumption with o = 5 min(1/L, 7 /|| w® — w*|)).

Convergence (exact minimization) — comparable to Thm 1

(assuming ||V < erv/v/mel W™ — wl|)
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Outline of proof of Theorem 1

@ Since wit!  argmin,, (f(w) + 5L | w — w'|?),
(w! — wit1)/n; is a subgradient of f at wi*'. lLe.,

f(W*) _ f(wt+1) > <(Wt t+1 )/77fa Wt+1> )
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Outline of proof of Theorem 1

@ Since wit!  argmin,, (f(w) + 5L | w — w'|?),
(w! — wit1)/n; is a subgradient of f at wi*'. lLe.,

f(W*) _ f(wt+1) > <(Wt t+1 )/77fa Wt+1> )

© Forany u >0,

Iw* — W w— w| < Sw - Wt
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Outline of proof of Theorem 1

@ Since wit!  argmin,, (f(w) + 5L | w — w'|?),
(w! — wit1)/n; is a subgradient of f at wi*'. lLe.,

f(W*) _ f(wt+1) > <(Wt t+1 )/77fa Wt+1> )

© Forany u >0,

Jwe = wh T w' = w < S w - w T

© Combining 1 & 2 and using f(w!*!) — f(w*) > oW — w* |2,
LI, |12 p? t+1 12
SIW = w2 > (1 om0 w2

©Q Maximize RHS wrt p.
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Outline of proof of Theorem 2

@ Letd' := Vipy(ah),
W) = W) = (W= W) w = w1
© By assumption
f(w™T) — f(w*) > oW — w7,
1812 < L wtT - w2
© Combining 1 & 2,

1 1
Slw —w!|2 > (on + )W — w2,
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Appendix

EEG problem — P300 visual speller dataset (subject A)

DAL SubLBFGS ProjGrad
@ Number of 5000 {
3800 3290
samples 4000
m = 2550. 3285
3000 3600
@ 6 class L_ 3280
classification. 2000 3400 3275
@ w c R37x64 1000 3270
3200
@ Trace-norm 0 ! 3265
At 0 100 200 300 O 100 200 O 1000 2000 3000
regularlzatlon. time (s) time (s) time (s)

Ryota Tomioka (Univ Tokyo) DAL 2009-12-12 22/22



	Introduction
	Methods
	Theoretical results
	Empirical results
	Summary
	Appendix

