MLSS Tutorial on:
Deep Belief Nets

(An updated and extended version of my 2007 NIPS tutorial)

Geoffrey Hinton
Canadian Institute for Advanced Research
&
Department of Computer Science
University of Toronto

Some things you will learn in this tutorial

A How to learn multi-layer generative models of unlabelled
data by learning one layer of features at a time.

I How to add Markov Random Fields in each hidden layer.

A How to use generative models to make discriminative
training methods work much better for classification and
regression.

I How to extend this approach to Gaussian Processes and
how to learn complex, domain-specific kernels for a
Gaussian Process.

A How to perform non-linear dimensionality reduction on very
large datasets

I How to learn binary, low-dimensional codes and how to
use them for very fast document retrieval.

A How to learn multilayer generative models of high-
dimensional sequential data.

A spectrum of machine learning tasks

Typical Statistics--

A Low-dimensional data (e.qg.
less than 100 dimensions)

A Lots of noise in the data

A There is not much structure in
the data, and what structure
there is, can be represented by
a fairly simple model.

A The main problem is
distinguishing true structure

from noise.

----Artificial Intelligence

A

A

High-dimensional data (e.qg.
more than 100 dimensions)

The noise Is not sufficient to
obscure the structure in the
data if we process it right.

There is a huge amount of
structure in the data, but the
structure iIs too complicated to
be represented by a simple
model.

The main problem is figuring
out a way to represent the
complicated structure so that it
can be learned.

Historical background:
First generation neural networks

A Perceptrons (~1960) WY s
used a layer of hand- e.g. class labels
coded features and tried
to recognize objects by
learning how to weight
these features. non-adaptive

i There was a neat : hand-coded
: . * features
learning algorithm for
adjusting the welights.

I But perceptrons are input units
fundamentally limited e.g. pixels
In what they can learn
to do. Sketch of a typical

perceptron fror

Second generation neural networks (~1985)

Compare outputs with
correct answer to get
error signal

G| OUtpUtS

hidden
\/ layers

<= INPUt vector

A temporary digression

A Vapnik and his co-workers developed a very clever type
of perceptron called a Support Vector Machine.

I Instead of hand-coding the layer of non-adaptive
features, each training example is used to create a
new feature using a fixed recipe.

A The feature computes how similar a test example is to that
training example.

I Then a clever optimization technique Is used to select
the best subset of the features and to decide how to
weight each feature when classifying a test case.

A But its just a perceptron and has all the same limitations.

Aln the 199008s, many researc
networks with multiple adaptive hidden layers because
Support Vector Machines worked better.

What is wrong with back-propagation?

A It requires labeled training data.
I Almost all data is unlabeled.
A The learning time does not scale well

I It Is very slow In networks with multiple
hidden layers.

A It can get stuck in poor local optima.

| These are often gquite good, but for deep
nets they are far from optimal.

Overcoming the limitations of back-
propagation

A Keep the efficiency and simplicity of using a
gradient method for adjusting the weights, but use
It for modeling the structure of the sensory input.

I Adjust the weights to maximize the probability
that a generative model would have produced
the sensory Iinput.

I Learn p(image) not p(label | image)

Alf you want to do computer vision, first learn
computer graphics

A What kind of generative model should we learn?

Belief Nets

A A belief net is a directed
acyclic graph composed of
stochastic variables.

A We get to observe some of
the variables and we would
like to solve two problems:

A The inference problem: Infer
the states of the unobserved
variables.

A The learning problem: Adjust
the interactions between
variables to make the
network more likely to
generate the observed data.

stochastic
hidden
cause

visible
effect

We will use nets composed of
layers of stochastic binary variables
with weighted connections. Later,
we will generalize to other types of
variable.

Stochastic binary units
(Bernoulli variables)

1

A These have a state of 1
or O. T

p(s =9

A The probability of

turning on is determined 0 |

by the weighted input e

from other units (plus a b +a s;w; —
bias) J

1
1+exp(-b - a sjw;i)
J

p(s =1 =

Learning Deep Belief Nets

A It is easy to generate an
unbiased example at the
leaf nodes, so we can see
what kinds of data the
network believes in.

A Itis hard to infer the
posterior distribution over
all possible configurations
of hidden causes.

A Itis hard to even get a
sample from the posterior.

A So how can we learn deep
belief nets that have
millions of parameters?

stochastic
hidden
cause

visible
effect

The learning rule for sigmoid belief nets

w00 \5/
A Learning is easy if we can

get an unbiased sample
from the posterior

distribution over hidden
states given the observed /

data.
bt p(§=1)=
A For each unit, maximize | 1+exp(- a SjWij;)

the log probability that its |
binary state in the sample DW:: = é€Ss. (3 - p)

. ji j |
from the posterior would be)
generated by the sampled |

learning

binary states of its parents. B

Explaining away (Judea Pearl)

A Even if two hidden causes are independent, they can

become dependent when we observe an effect that they can
both influence.

I If we learn that there was an earthquake it reduces the
probabllity that the house jJumped because of a truck.

20\ 50 posterior
p(1,1)=.0001

0 p(1.0)=.4999

p(0.1)=.4999

0(0.0)=.0001

Why it is usually very hard to learn
sigmoid belief nets one layer at a time

A To learn W, we need the posterior
distribution in the first hidden layer.

A Problem 1: The posterior is typically | hidden variables
compl i cated because oflﬁexpl

awayo.
A Problem 2: The posterior depends
on the prior as well as the likelihood.

hidden variables

I So to learn W, we need to know 1 prior
the weights in higher layers, even . _
if we are only approximating the hidden variables

posterior. All the weights interact. " I'I1 9 W
A Problem 3: We need to integrate “I'g° 1

over all possible configurations of data
the higher variables to get the prior
for first hidden layer. Yuk!

Some methods of learning
deep belief nets

A Monte Carlo methods can be used to sample
from the posterior.

I But its painfully slow for large, deep models.

Aln the 199006s peopl e de\y
methods for learning deep belief nets

I These only get approximate samples from the
posterior.

I Nevetheless, the learning is still guaranteed to
Improve a variational bound on the log
probability of generating the observed data.

The breakthrough that makes deep
learning efficient

A To learn deep nets efficiently, we need to learn one layer
of features at a time. This does not work well if we
assume that the latent variables are independent in the
prior :

I The latent variables are not independent in the
posterior so inference is hard for non-linear models.

I The learning tries to find independent causes using
one hidden layer which is not usually possible.

A We need a way of learning one layer at a time that takes
Into account the fact that we will be learning more
hidden layers later.

I We solve this problem by using an undirected model.

Two types of generative neural network

A If we connect binary stochastic neurons in a
directed acyclic graph we get a Sigmoid Belief
Net (Radford Neal 1992).

A If we connect binary stochastic neurons using
symmetric connections we get a Boltzmann
Machine (Hinton & Sejnowski, 1983).

I If we restrict the connectivity in a special way,
It IS easy to learn a Boltzmann machine.

Restricted Boltzmann Machines
(Smol ensky , 1986, call ed

A We restrict the connectivity to make
learning easier. hidden

I Only one layer of hidden units.
A We will deal with more layers later

I No connections between hidden units.

A In an RBM, the hidden units are
conditionally independent given the
visible states. visible

I So we can quickly get an unbiased
sample from the posterior distribution
when given a data-vector.

I This Is a big advantage over directed
belief nets

The Energy of a joint configuration
(ignoring terms to do with biases)

binary state of binary state of
visible unit i hidden unit |

\ /

E(v.h = - avihyjw
/ N

Energy with configuration weight between
v on the visible units and units i and |

h on the hidden units

- ME(v,h) _ vh
HW;

Weights A Energies A Probabillities

A Each possible joint configuration of the visible
and hidden units has an energy

i The energy is determined by the weights and
biases (as in a Hopfield net).

A The energy of a joint configuration of the visible
and hidden units determines its probabillity:

o(v, h) -y E(v,h)

A The probability of a configuration over the visible
units is found by summing the probabillities of all
the joint configurations that contain It.

Using energies to define probabillities

N E(v,h)
A The probability of a joint p(V h) —

configuration over both visible E(u,Q)
and hidden units depends on r'} a e
the energy of that joint partition
configuration compared with function

the energy of all other joint

configurations.

- E(v,h
A The probability of a a € (v.n)
configuration of the visible
units is the sum of the p(V) - E(u,q)
probabilities of all the joint a e
configurations that contain it. u,g

A picture of the maximum likelihood learning

algorithm for an RBM

O

O

OMO
7N

TO

t=0

0f®

DOIHOD
N\ /
O

t=1

t=2

ODO

<v;h, >
000 a/fantasy

TO

t = infinity

Start with a training vector on the visible units.

Then alternate between updating all the hidden units in
parallel and updating all the visible units in parallel.

plog p(v) _

HW;

= <yh;>° - <yh;>"

A quick way to learn an RBM

O O O Q Start with a training vector on the
visible units.
<vih;> Update all the hidden units in
parallel
O O Update the all the visible units in
) parall el to get a
[=
data reconstruction Update the hidden units again.

Dw;

— 0 1

= e(<vih;>" - <vh;>’)

This is not following the gradient of the log likelihood. But it
works well. It is approximately following the gradient of another
objective function (Carreira-Perpinan & Hinton, 2005).

How to learn a set of features that are good for
reconstructing images of the digit 2

50 binary 50 binary
feature feature
Nneurons neurons
Increment weights Decrement weights
between an active between an active
pixel and an active pixel and an active
feature feature
16 x 16 16 x 16
pixel pixel
Image Image
data reconstruction

(reality) (better than reality)

The final 50 x 256 weights

B
]
hasl
. o "
E
-]

Each neuron grabs a different feature.

How well can we reconstruct the digit images
from the binary feature activations?

Reconstruction
from activated
Data binary features

New test images from
the digit class that the
model was trained on

Reconstruction
from activated
Data binary features

Images from an
unfamiliar digit class
(the network tries to see
every image as a 2)

Three ways to combine probabllity density
models (an underlying theme of the tutorial)

A Mixture: Take a weighted average of the distributions.

I It can never be sharper than the individual distributions.
| t 6s a very weak way to cor

A Product: Multiply the distributions at each point and then
renormalize (this is how an RBM combines the distributions defined
by each hidden unit)

I Exponentially more powerful than a mixture. The
normalization makes maximum likelihood learning
difficult, but approximations allow us to learn anyway.

A Composition: Use the values of the latent variables of one
model as the data for the next model.

I Works well for learning multiple layers of representation,
but only if the individual models are undirected.

Training a deep network
(the main reason RBMOs a

A First train a layer of features that receive input directly
from the pixels.

A Then treat the activations of the trained features as if
they were pixels and learn features of features in a
second hidden layer.

A It can be proved that each time we add another layer of
features we improve a variational lower bound on the log
probability of the training data.

I The proof is slightly complicated.

I But it is based on a neat equivalence between an
RBM and a deep directed model (described later)

The generative model after learning 3 layers

A To generate data:
1. Get an equilibrium sample
I w

from the top-level RBM by
performing alternating Gibbs

sampling for a long time.

2. Perform a top-down pass to 1 W
get states for all the other 2
layers.

W
So the lower level bottom-up I l’ 1
connections are not part of data

the generative model. They
are just used for inference.

Why does greedy learning work?
An aside: Averaging factorial distributions

A If you average some factorial distributions, you
do NOT get a factorial distribution.

I In an RBM, the posterior over the hidden units
IS factorial for each visible vector.

I But the aggregated posterior over all training
cases Is not factorial (even if the data was
generated by the RBM itself).

Why does greedy learning work?

A Each RBM converts its data distribution
Into an aggregated posterior distribution

over its hidden units. ek 5 ﬂ p(h[W)

A This divides the task of modeling its
data into two tasks:

I Task 1: Learn generative weights
that can convert the aggregated
posterior distribution over the hidden
units back into the data distribution.

I Task 2: Learn to model the
aggregated posterior distribution

over the hidden units. Task 1 p(v|h,W)
I The RBM does a good job of task 1
and a moderately good job of task 2.

A Task 2 is easier (for the next RBM) than
modeling the original data because the
aggregated posterior distribution is on visible units
closer to a distribution that an RBM can
model perfectly.

aggregated
posterior distribution

on hidden units

data distribution

Why does greedy learning work?

The weights, W, In the bottom level RBM define
p(v|h) and they also, indirectly, define p(h).

So we can express the RBM model as

p(v)=a p(h) p(v|h)
h

If we leave p(v|h) alone and improve p(h), we will
iImprove p(v).

To improve p(h), we need it to be a better model of
the distribution over hidden
vectors produced by applying W to the data.

Which distributions are factorial In a
directed belief net?

A In a directed belief net with one hidden layer, the
posterior over the hidden units p(h|v) is non-
factorial (due to explaining away).

I The aggregated posterior is factorial if the
data was generated by the directed model.

Alt 6s the opposite way r
model which has factorial posteriors and a non-
factorial prior p(h) over the hiddens.

AThe intuitions that people have from using directed
models are very misleading for undirected models.

oOu

Why does greedy learning fall in a directed module?

A A directed module also converts its data

distribution into an aggregated posterior Task 2 ﬂ p(h |W2)
.

Task 1 The learning is now harder
because the posterior for each training
case Is non-factorial.

Task 2 is performed using an
iIndependent prior. This is a very bad
approximation unless the aggregated
posterior is close to factorial.

aggregated
posterior distribution

on hidden units

v|hW
A A directed module attempts to make the Task 1 ﬂ p(v| 1)
aggregated posterior factorial in one step.

This is too difficult and leads to a bad
compromise. There is also no data distribution
guarantee that the aggregated
posterior is easier to model than the
data distribution.

on visible units

A model of digit recognition

The top two layers form an

associative memory whose 2000 top-level neurons
energy landscape models the low
dimensional manifolds of the I I
digits.
10 label
The energy valleys have names wmp 500 neurons
neurons

The model learns to generate
combinations of labels and images.

To perform recognition we start with a
neutral state of the label units and do
an up-pass from the image followed
by a few iterations of the top-level
associative memory.

11

500 neurons

ri

28 x 28
pixel
Image

Fine-tuning with a contrastive version of the
Nwa-Ekeepo al gorit

After learning many layers of features, we can fine-tune
the features to improve generation.

1. Do a stochastic bottom-up pass

I Adjust the top-down weights to be good at
reconstructing the feature activities in the layer below.

2. Do a few iterations of sampling in the top level RBM
-- Adjust the weights in the top-level RBM.
3. Do a stochastic top-down pass

I Adjust the bottom-up weights to be good at
reconstructing the feature activities in the layer above.

Show the movie of the network
generating digits

(available at www.cs.toronto/~hinton)

Samples generated by letting the associative
memory run with one label clamped. There are
1000 iterations of alternating Gibbs sampling
between samples.

O ¢ 06 o 0O 0 0 0 9D

<N eanluwyer~NQ
DooNGFgYLWr—
VY O~
Dol e Yy gy —
DN e a0~
I AV Y, I PRV N L
o Qe o~ G LN N
QB Y RPN~

!
2
5

f
5
6
T
C
?

Do~d v € WS

Examples of correctly recognized handwritten digits
that the neural network had never seen before

ool N\ (48172
232 25> 7
3¢ 794947046 >59
le £ 772\ 7143279

Its very

b8 T3 49439 7 g

How well does it discriminate on MNIST test set with
no extra information about geometric distortions?

AGenerative model based on R
A Support Vector Machine (Decoste et. al.) 1.4%
A Backprop with 1000 hiddens (Platt) ~1.6%
A Backprop with 500 -->300 hiddens ~1.6%
A K-Nearest Neighbor ~ 3.3%

A See Le Cun et. al. 1998 for more results

A Its better than backprop and much more neurally plausible
because the neurons only need to send one kind of signal,
and the teacher can be another sensory input.

Unsuper vitsread niipnrgeo a l
models that have more data and better priors

A Ranzato et. al. (NIPS 2006) used an additional
600,000 distorted digits.

A They also used convolutional multilayer neural
networks that have some built-in, local
translational invariance.

Back-propagation alone: 0.49%

Unsupervised layer-by-layer
pre-training followed by backprop: 0.39% (record)

Another view of why layer-by-layer
learning works (Hinton, Osindero & Teh 2006)

A There is an unexpected equivalence between
RBMOs and directed net wc
that all use the same weights.

| This equivalence also gives insight into why
contrastive divergence learning works.

An infinite sigmoid belief net
that Is equivalent to an RBM

A The distribution generated by this
Infinite directed net with replicated
weights is the equilibrium distribution
for a compatible pair of conditional
distributions: p(v|h) and p(h|v) that
are both defined by W

I A top-down pass of the directed
net is exactly equivalent to letting
a Restricted Boltzmann Machine
settle to equilibrium.

I So this infinite directed net
defines the same distribution as
an RBM.

Inference In a directed net
with replicated weights

A The variables in hO are conditionally
Independent given V0.

I Inference is trivial. We just
multiply vO by W transpose.

I The model above hO implements
a complementary prior.

I Multiplying vO by W transpose
gives the product of the likelihood
term and the prior term.

A Inference in the directed net is
exactly equivalent to letting a
Restricted Boltzmann Machine
settle to equilibrium starting at the
data.

A The learning rule for a sigmoid belief

net is:) .
Do~ si(s - &)

A With replicated weights this becomes:

S)(s° - §)+
S(s)- 5) +
Sj(5-)+

o o

Sjsi

Learning a deep directed etc.

network W
A First learn with all the weights tied h2
i This is exactly equivalent to Jw
learning an RBM V2
I Contrastive divergence learning lWT
IS equivalent to ignoring the small "
derivatives contributed by the tied 1
weights between deeper layers. l W
V1
T
ho Lw
I W ho
Jw

A Then freeze the first layer of weights etc.

In both directions and learn the 1 w!
remaining weights (still tied
together). h2
I This Is equivalent to learning 1 W
another RBM, using the V2
aggregated posterior distribution 1WT
of hO as the data. 1
Jw

V1

I W 1 wT
ho ho

W1-‘I;ozer F 1Wfrozer

VO

How many layers should we use and how
wide should they be?

A There is no simple answer.

I Extensi ve experi ments by Yc
(described later) suggest that several hidden layers is
better than one.

I Results are fairly robust against changes in the size of a
layer, but the top layer should be big.

A Deep belief nets give their creator a lot of freedom.
I The best way to use that freedom depends on the task.

I With enough narrow layers we can model any distribution
over binary vectors (Sutskever & Hinton, 2007)

What happens when the weights in higher layers
become different from the weights in the first layer?

A The higher layers no longer implement a complementary
prior.

I So performing inference using the frozen weights in
the first layer i1s no longer correct. But its still pretty
good.

I Using this incorrect inference procedure gives a
variational lower bound on the log probability of the
data.

A The higher layers learn a prior that is closer to the
aggregated posterior distribution of the first hidden layer.

i This I mproves the networ ko

A Hinton, Osindero and Teh (2006) prove that this
|mprovement IS always bigger than the loss in the variational
bound caused by using less accurate inference.

An improved version of Contrastive
Divergence learning (if time permits)

A The main worry with CD is that there will be deep
minima of the energy function far away from the
data.

I To find these we need to run the Markov chain for
a long time (maybe thousands of steps).

I But we cannot afford to run the chain for too long
for each update of the weights.

A Maybe we can run the same Markov chain over
many weight updates? (Neal, 1992)

I If the learning rate is very small, this should be
equivalent to running the chain for many steps
and then doing a bigger weight update.

Persistent CD
(Tjmen Teileman, ICML 2008 & 2009)

A Use minibatches of 100 cases to estimate the
first term In the gradient. Use a single batch of
100 fantasies to estimate the second term in the
gradient.

A After each weight update, generate the new
fantasies from the previous fantasies by using
one alternating Gibbs update.

I So the fantasies can get far from the data.

Contrastive divergence as an
adversarial game

A Why does persisitent CD work so well with only
100 negative examples to characterize the
whole partition function?

I For all interesting problems the partition
function is highly multi-modal.

I How does it manage to find all the modes
without starting at the data?

The learning causes very fast mixing

A The learning interacts with the Markov chain.

A Persisitent Contrastive Divergence cannot be
analysed by viewing the learning as an outer loop.

I Wherever the fantasies outnumber the
positive data, the free-energy surface is
railsed. This makes the fantasies rush around
hyperactively.

How persistent CD moves between the
modes of the model

A If a mode has more fantasy n
particles than data, the free-
energy surface Is raised until
the fantasy particles escape.

I This can overcome free-
energy barriers that would
be too high for the Markov
Chain to jJump.

A The free-energy surface is
being changed to help
mixing in addition to defining
the model.

Summary so far

A Restricted Boltzmann Machines provide a simple way to
learn a layer of features without any supervision.

I Maximum likelihood learning is computationally
expensive because of the normalization term, but
contrastive divergence learning is fast and usually
works well.

A Many layers of representation can be learned by treating
the hidden states of one RBM as the visible data for
training the next RBM (a composition of experts).

A This creates good generative models that can then be
fine-tuned.

I Contrastive wake-sleep can fine-tune generation.

BREAK

Overview of the rest of the tutorial

A How to fine-tune a greedily trained generative
model to be better at discrimination.

A How to learn a kernel for a Gaussian process.

A How to use deep belief nets for non-linear
dimensionality reduction and document retrieval.

A How to learn a generative hierarchy of
conditional random fields.

A A more advanced learning module for deep
belief nets that contains multiplicative
Interactions.

A How to learn deep models of sequential data.

Fine-tuning for discrimination

A First learn one layer at a time greedily.

ATh

en treat-trhailsiagonpha

Initial set of weights which can be fine-tuned by
a local search procedure.

I Contrastive wake-sleep is one way of fine-
tuning the model to be better at generation.

A Bac
Moo

Kpropagation can be used to fine-tune the
el for better discrimination.

o T

NiS overcomes many of the limitations of

standard backpropagation.

Why backpropagation works better with
greedy pre-training: The optimization view

A Greedily learning one layer at a time scales well
to really big networks, especially if we have
locality in each layer.

A We do not start

packpropagation until we already

have sensible feature detectors that should

already be very

nelpful for the discrimination task.

I So the Initial gradients are sensible and
backprop only needs to perform a local search
from a sensible starting point.

Why backpropagation works better with
greedy pre-training: The overfitting view

A Most of the information in the final weights comes from
modeling the distribution of input vectors.

I The input vectors generally contain a lot more
Information than the labels.

I The precious information in the labels is only used for
the final fine-tuning.

I The fine-tuning only modifies the features slightly to get
the category boundaries right. It does not need to
discover features.

A This type of backpropagation works well even if most of
the training data is unlabeled.

I The unlabeled data is still very useful for discovering
good features.

First, model the distribution of digit images

The top two layers form a restricted 2000 units

Boltzmann machine whose free energy

landscape should model the low I

dimensional manifolds of the digits.
The network learns a density model for 500 units
unlabeled digit images. When we generate I l
from the model we get things that look like :
real digits of all classes. 500 units
But do the hidden features really help with I l
digit discrimination? 28 x 28

: Ixel
Add 10 softmaxed units to the top and do P
: image

backpropagation.

Results on permutation-invariant MNIST task

A Very carefully trained backprop net with 1.6%
one or two hidden layers (Platt; Hinton)

A SVM (Decoste & Schoelkopf, 2002) 1.4%

A Generative model of joint density of 1.25%
Images and labels (+ generative fine-tuning)

A Generative model of unlabelled digits 1.15%

followed by gentle backpropagation
(Hinton & Salakhutdinov, Science 2006)

Learning Dynamics of Deep Nets

t he next 4 sl 1 des descri be

Before fine -tuning After fine -tuning

count

Effect of Unsupervised Pre-training

Erhan et . al . Al STATSO0?2

9 layer without pretraining 35 ! !
(51 layer with pretraining ' :

T T T T T T T
2 ! ! ' ! ! ' : :

: : o >H<r=IIzvy'erswith'::uut pretraining
[30_... Hlayerswith pretraining

sl S S IO SRS S b RO ISUPUE DT S]

25k -

o : ok R | | EERCRRREE P R D pee P D ERRER m

count

: " : : : :
: : : 4 :
2 : : b :
[TR T " | . » :
ol : B ¥ ¥ I :
[N
I

1) 1.2 14 16 18 2 22 24 26 28 . 3
test error

1.1 ’ 1.2 1.3 14 1.5 16 1.7 18 19 2 2.1
test error

64

Effect of Depth

with pre -training

without pre -training

3
28

g

4

2

g

16

14 |

12F

(242d) loua uonesyisse| 159}

1 1 1 1 1
) @ o =]] [[S]
o —

3] ol nl —_

(242d) 10412 UoEIYISSE]D }S529)

number of layers

number of layers

65

Learning Trajectories in Function Space

(a 2-D visualization produced with t-SNE)
Erhan et. al . Al STA"

A Each point is a
model in function
space

A Color = epoch

A Top: trajectories
without pre-training.
Each trajectory

converges to a
different local min.

A Bottom: Trajectories
with pre-training.
A No overlap!

Why unsupervised pre-training makes sense

stuff

/.

image —>(label

If image-label pairs were
generated this way, it
would make sense to try
to go straight from
Images to labels.

For example, do the
pixels have even parity?

stuff

high low
bandwidth bandwidth

image label

If image-label pairs are
generated this way, it
makes sense to first learn
to recover the stuff that
caused the image by
Inverting the high
bandwidth pathway.

Modeling real-valued data

A For images of digits it is possible to represent
Intermediate intensities as if they were probabilities by
using -Mimelacho | ogi stic units.

I We can treat intermediate values as the probability
that the pixel is inked.

A This will not work for real images.

I In areal image, the intensity of a pixel is almost
always almost exactly the average of the neighboring
pixels.

I Mean-field logistic units cannot represent precise
Intermediate values.

Replacing binary variables by

Integer-valued variables
(Teh and Hinton, 2001)

A One way to model an integer-valued variable is
to make N identical copies of a binary unit.

A All copies have the same probability,
of being Aono P = | o
IThe tot al number of no
firing rate of a neuron.

I It has a binomial distribution with mean N p
and variance N p(1-p)

A better way to implement integer values

A Make many copies of a binary unit.

A All copies have the same weights and the same
adaptive bias, b, but they have different fixed offsets to
the bias:

b- 0.5 b-15 b- 25 b-35...

A fast approxmat'on/

q logistiqx+0.5- n) ° |og(+e¥)

n=1

A Contrastive divergence learning works well for the sum of
binary units with offset biases.

A It also works for rectified linear units. These are much faster
to compute than the sum of many logistic units.

output = max(0, x + randn*sqrt(logistic(x)))

How to train a bipartite network of rectified
linear units
A Just use contrastive divergence to lower the energy of

data and raise the energy of nearby configurations that
the model prefers to the data.

Start with a training vector on the

O O visible units.

<Vih>gq Update all hidden units in parallel
<ViNj>recon with sampling noise

Update the visible units in parallel
to get a Nreconst

data reconstruction Update the hidden units again

D

] - e(<Vi hj>data' <V, hj>recon)

3D Object Recognition: The NORB dataset

Stereo-pairs of grayscale images of toy objects.

Animals
Humans [& & \X e L o fff" i Ll
Planes W Q)\/ s

Normalized-
uniform
version of
NORB

- 6 lighting conditions, 162 viewpoints

-Five object instances per class in the training set

- A different set of five instances per class in the test set
- 24,300 training cases, 24,300 test cases

Simplifying the data

A Each training case is a stereo-pair of 96x96 images.
I The object is centered.
I The edges of the image are mainly blank.
I The background is uniform and bright.

A To make learning faster | used simplified the data:
I Throw away one image.

I Only use the middle 64x64 pixels of the other
Image.

I Downsample to 32x32 by averaging 4 pixels.

Simplifying the data even more so that it can
be modeled by rectified linear units

A The intensity histogram for each 32x32 image has a
sharp peak for the bright background.

A Find this peak and call it zero.
A Call all intensities brighter than the background zero.

A Measure intensities downwards from the background
Intensity.

Test set error rates on NORB after greedy
learning of one or two hidden layers using
rectified linear units

Full NORB (2 images of 96x96)

A Logistic regression on the raw pixels 20.5%
A Gaussian SVM (trained by Leon Bottou) 11.6%
AConvolutional neural net

(convolutional nets have knowledge of translations built in)

Reduced NORB (1 image 32x32)

A Logistic regression on the raw pixels 30.2%
A Logistic regression on first hidden layer 14.9%
A Logistic regression on second hidden layer 10.2%

receptive

flelds of
some
rectified

The
linear
hidden
units.

A standard type of real-valued visible unit

A We can model pixels as
Gaussian variables.

Alternating Gibbs f
sampling is still easy,
though learning needs to :
be much slower. b V, -
parabolic energy-gradient
Containment pI’Oduced by the tOtaI
function Input to a visible unit
2 |
.. (v-h) . v
E(v.h) = a o2 abh; - a-hw
i evis | j ehid ij !
Wel ling et. al. (2005) show

exponential family. See also Bengio et. al. (2007)

A random sample of 10,000 binary filters learned
by Alex Krizhevsky on a million 32x32 color imag es.

700 701 702 703 704 705 706

723

~
i}
o)}
~l
=
-
~J
i}
[¢4]
~J
i}
(e}

~
N
o
~
N
[
~
N
N

~
N
)
~J
N
wu
~J
N
[=)]
~J
[\
-
~J
N
o]
~J
N
[Le]
~
w
(=]

~
w
B
~
w
(8]

~l
w
.c‘.

~
w
w
~
w
-~
~
w
co

~
iy
.“J.

742 744

~ ~
Ny w
o N

~J
Ul
W
~
Ul
B

755

~J
=y
Q0|
~J
)
O
~J
)
=

~
%]
~
~
(=]
=
~
(=)}
N

752
760

~
w
o

758 759

~I
[}
w

Combining deep belief nets with Gaussian processes

A Deep belief nets can benefit a lot from unlabeled data
when labeled data is scarce.

I They just use the labeled data for fine-tuning.

A Kernel methods, like Gaussian processes, work well on
small labeled training sets but are slow for large training
sets.

A So when there is a lot of unlabeled data and only a little
labeled data, combine the two approaches:

I First learn a deep belief net without using the labels.

I Then apply a Gaussian process model to the deepest
layer of features. This works better than using the raw
data.

i Then use GPO6s to get the d
propagated through the deep belief net. This is a
further win. | t-tuna ¢complicated GP O
domain-specific kernels.

Learning to extract the orientation of a face patch
(Salakhutdinov & Hinton, NIPS 2007)

Feature
Representation

F(XIW)

The training and test sets for predicting
face orientation

Training Data
=22.07 32.99 -4l. 15 66.38 27.49 Unlabeled

100, 500, or 1000 labeled cases 11,000 unlabeled cases

Test Data

face patches from new people

The root mean squared error in the orientation
when combining GPO0Os wit

GP on GP on GP on top-level
the top-level features with
pixels features fine-tuning
100 labels |22.2 17.9 15.2
500 labels|17.2 12.7 7.2
1000 labels|16.3 11.2 6.4

Conclusion: The deep features are much better
than the pixels. Fine-tuning helps a lot.

Deep Autoencoders
(Hinton & Salakhutdinov, 2006)

A They always looked like a really
nice way to do non-linear
dimensionality reduction:

I Butitis very difficult to
optimize deep autoencoders
using backpropagation.

A We now have a much better way
to optimize them:

T F1 r st tral n a
I Then Aunroll o
I Then fine-tune with backprop.

28x28

A i i

1000 neurons

W, L

500 neurons

WA 1T

A
30 | «—

250 neurons

linear
W, I units
250 neurons
stsack Tof 4 RE
t N |&®0Bneurons
W, T
1000 neurons
W, T

28x28

A comparison of methods for compressing
digit images to 30 real numbers.

real
data

30-D
deep auto

30-D logistic
PCA

30-D
PCA

