
MLSS Tutorial on:

Deep Belief Nets
(An updated and extended version of my 2007 NIPS tutorial)

Geoffrey Hinton

Canadian Institute for Advanced Research

&

Department of Computer Science

University of Toronto



Some things you will learn in this tutorial

ÅHow to learn multi-layer generative models of unlabelled 
data by learning one layer of features at a time.

ïHow to add Markov Random Fields in each hidden layer.

ÅHow to use generative models to make discriminative 
training methods work much better for classification and 
regression.

ïHow to extend this approach to Gaussian Processes and 
how to learn complex,  domain-specific kernels for a 
Gaussian Process.

ÅHow to perform non-linear dimensionality reduction on very 
large datasets

ïHow to learn binary, low-dimensional codes and how to 
use them for very fast document retrieval.

ÅHow to learn multilayer generative models of high-
dimensional sequential data.



A spectrum of machine learning tasks

Å Low-dimensional data (e.g. 

less than 100 dimensions)

Å Lots of noise in the data

Å There is not much structure in 

the data, and what structure 

there is, can be represented by 

a fairly simple model.

Å The main problem is 

distinguishing true structure 

from noise.

Å High-dimensional data (e.g. 

more than 100 dimensions)

Å The noise is not sufficient to 

obscure the structure in the 

data if we process it right.

Å There is a huge amount of 

structure in the data, but the 

structure is too complicated to 

be represented by a simple 

model.

Å The main problem is figuring 

out a way to represent the 

complicated structure so that it 

can be learned.

Typical Statistics------------Artificial Intelligence



Historical background:
First generation neural networks

ÅPerceptrons (~1960) 
used a layer of hand-
coded features and tried 
to recognize objects by 
learning how to weight 
these features.

ïThere was a neat 
learning algorithm for 
adjusting the weights.

ïBut perceptrons are 
fundamentally limited 
in what they can learn 
to do.

non-adaptive

hand-coded

features

output units  

e.g. class labels

input units 

e.g. pixels

Sketch of a typical 

perceptron from the 1960ôs

Bomb Toy



Second generation neural networks (~1985)

input vector

hidden 

layers

outputs

Back-propagate                

error signal to 

get derivatives 

for learning

Compare outputs with 

correct answer to get 

error signal



A temporary digression

ÅVapnik and his co-workers developed a very clever type 

of perceptron called a Support Vector Machine.

ïInstead of hand-coding the layer of non-adaptive 

features, each training example is used to create a 

new feature using a fixed recipe.

ÅThe feature computes how similar a test example is to that 

training example. 

ïThen a clever optimization technique is used to select 

the best subset of the features and to decide how to 

weight each feature when classifying a test case.

ÅBut its just a perceptron and has all the same limitations.

ÅIn the 1990ôs, many researchers abandoned neural 

networks with multiple adaptive hidden layers because 

Support Vector Machines worked better.



What is wrong with back-propagation?

ÅIt requires labeled training data.

ïAlmost all data is unlabeled.

ÅThe learning time does not scale well

ïIt is very slow in networks with multiple 

hidden layers.

ÅIt can get stuck in poor local optima.

ïThese are often quite good, but for deep 

nets they are far from optimal.



Overcoming the limitations of  back-

propagation

ÅKeep the efficiency and simplicity of using a 

gradient method for adjusting the weights, but use 

it for modeling the structure of the sensory input.

ïAdjust the weights to maximize the probability 

that a generative model would have produced 

the sensory input. 

ïLearn p(image) not  p(label | image)

ÅIf you want to do computer vision, first learn 

computer graphics

ÅWhat kind of generative model should we learn?



Belief Nets

ÅA belief net is a directed 

acyclic graph composed of 

stochastic variables.

ÅWe get to observe some of 

the variables and we would 

like to solve two problems:

ÅThe inference problem: Infer 

the states of the unobserved 

variables.

ÅThe learning problem: Adjust 

the interactions between 

variables to make the 

network more likely to 

generate the observed data.

stochastic

hidden        

cause

visible 

effect

We will use nets composed of 

layers of stochastic binary variables 

with weighted connections.  Later, 

we will generalize to other types of 

variable.



Stochastic binary units
(Bernoulli variables)

ÅThese have a state of 1 

or 0.

ÅThe probability of 

turning on is determined 

by the weighted input 

from other units (plus a 

bias)

0

0

1

ä--+
==

j

jiji
i

wsb
sp

)exp(1
)(

1
1

ä+
j

jiji wsb

)( 1=isp



Learning Deep Belief Nets

ÅIt is easy to generate an 

unbiased example at the 

leaf nodes, so we can see 

what kinds of data the 

network believes in.

ÅIt is hard to infer the 

posterior distribution over 

all  possible configurations 

of hidden causes.

ÅIt is hard to even get  a 

sample from the posterior.

ÅSo how can we learn deep 

belief nets that have 

millions of parameters?

stochastic

hidden        

cause

visible 

effect



The learning rule for sigmoid belief nets

ÅLearning is easy if we can 

get an unbiased sample 

from the posterior 

distribution over hidden 

states given the observed 

data.

ÅFor each unit, maximize 

the log probability that its 

binary state in the sample 

from the posterior would be 

generated by the sampled 

binary states of its parents. 

ä-+
==¹

j

jij
ii

ws
spp

)exp(1
)(

1
1

j

i

jiw

)( iijji pssw -=D e

is

js

learning 

rate



Explaining away (Judea Pearl)

ÅEven if two hidden causes are independent, they can 

become dependent when we observe an effect that they can 

both influence. 

ïIf we learn that there was an earthquake it reduces the 

probability that the house jumped because of a truck.

truck hits house earthquake

house jumps

20 20

-20

-10 -10

p(1,1)=.0001

p(1,0)=.4999

p(0,1)=.4999

p(0,0)=.0001

posterior



Why it is usually very hard to learn     

sigmoid belief nets one layer at a time

ÅTo learn W, we need the posterior 
distribution in the first hidden layer.

ÅProblem 1: The posterior is typically 
complicated because of ñexplaining 
awayò.

ÅProblem 2: The posterior depends 
on the prior as well as the likelihood. 

ïSo to learn W, we need to know 
the weights in higher layers, even 
if we are only approximating the 
posterior. All the weights interact.

ÅProblem 3: We need to integrate 
over all possible configurations of 
the higher variables to get the prior 
for first hidden layer. Yuk!

data

hidden variables

hidden variables

hidden variables

likelihood W

prior



Some methods of learning 

deep belief nets

ÅMonte Carlo methods can be used to sample 

from the posterior.

ïBut its painfully slow for large, deep models.

ÅIn the 1990ôs people developed variational 

methods for learning deep belief nets

ïThese only get approximate samples from the 

posterior. 

ïNevetheless, the learning is still guaranteed to 

improve a variational  bound on the log 

probability of generating the observed data.



The breakthrough that makes deep 

learning efficient

ÅTo learn deep nets efficiently, we need to learn one layer 

of features at a time. This does not work well if we 

assume that the latent variables are independent in the 

prior :

ïThe latent variables are not independent in the 

posterior  so inference is hard for non-linear models.

ïThe learning tries to find independent causes using 

one hidden layer which is not usually possible.

ÅWe need a way of learning one layer at a time that takes 

into account  the fact that we will be learning more 

hidden layers later.

ïWe solve this problem by using an undirected model.



Two types of generative neural network

ÅIf we connect binary stochastic neurons in a 

directed acyclic graph we get a Sigmoid Belief 

Net (Radford Neal 1992).

ÅIf we connect binary stochastic neurons using 

symmetric connections we get a Boltzmann 

Machine (Hinton & Sejnowski, 1983).

ïIf we restrict the connectivity in a special way, 

it is easy to learn a Boltzmann machine.



Restricted Boltzmann Machines
(Smolensky ,1986, called them ñharmoniumsò)

ÅWe restrict the connectivity to make 

learning easier.

ïOnly one layer of hidden units.

ÅWe will deal with more layers later

ïNo connections between hidden units.

ÅIn an RBM, the hidden units are 

conditionally independent given the 

visible states.  

ïSo we can quickly get an unbiased 

sample from the posterior distribution 

when given a data-vector.

ïThis is a big advantage over directed 

belief nets

hidden

i

j

visible



The Energy of a joint configuration
(ignoring terms to do with biases)

ä-=
ji

ijji whvv,hE
,

)(

weight between 

units i and j

Energy with configuration 

v on the visible units and 

h on the hidden units

binary state of 

visible unit i

binary state of 

hidden unit j

ji

ij

hv
w

hvE
=

µ

µ
-

),(



Weights Ą Energies Ą Probabilities

ÅEach possible joint configuration of the visible 

and hidden units has an energy

ïThe energy is determined by the weights and 

biases (as in a Hopfield net).

ÅThe energy of a joint configuration of the visible 

and hidden units determines its probability:

ÅThe probability of a configuration over the visible 

units is found by summing the probabilities of all 

the joint configurations that contain it. 

),(
),(

hvE
hvp e-´



Using energies to define probabilities

ÅThe probability of a joint 

configuration over both visible 

and hidden units depends on 

the energy of that joint 

configuration compared with 

the energy of all other joint 

configurations.

ÅThe probability of a 

configuration of the visible 

units is the sum of the 

probabilities of all the joint 

configurations that contain it.

ä-

-

=

gu

guE

hvE

e

e
hvp

,

),(

),(

),(

ä

ä

-

-

=

gu

guE
h

hvE

e

e

vp

,

),(

),(

)(

partition 

function



A picture of the maximum likelihood learning 

algorithm for an RBM

0>< jihv ¤>< jihv

i

j

i

j

i

j

i

j

t = 0                 t = 1                  t = 2                               t = infinity

¤><-><=
µ

µ
jiji

ij

hvhv
w

vp 0)(log

Start with a training vector on the visible units.

Then alternate between updating all the hidden units in 

parallel and updating all the visible units in parallel.

a fantasy



A quick way to learn an RBM

0>< jihv 1>< jihv

i

j

i

j

t = 0                 t = 1   

)( 10 ><-><=D jijiij hvhvw e

Start with a training vector on the 

visible units.

Update all the hidden units in 

parallel

Update the all the visible units in 

parallel to get a ñreconstructionò.

Update the hidden units again. 

This is not following the gradient of the log likelihood. But it 

works well. It is approximately following the gradient of another 

objective function (Carreira-Perpinan & Hinton, 2005).

reconstructiondata



How to learn a set of features that are good for 

reconstructing images of the digit 2

50 binary 

feature 

neurons

16 x 16 

pixel     

image

50 binary 

feature 

neurons

16 x 16 

pixel     

image

Increment weights 

between an active 

pixel and an active 

feature

Decrement weights 

between an active 

pixel and an active 

feature

data 

(reality)

reconstruction    

(better than reality)



The final 50 x 256 weights

Each neuron grabs a different feature.



Reconstruction 

from activated 

binary featuresData

Reconstruction 

from activated 

binary featuresData

How well can we reconstruct the digit images 

from the binary feature activations?

New test images from 

the digit class that the 

model was trained on

Images from an 

unfamiliar digit class 

(the network tries to see 

every image as a 2)



Three ways to combine probability density 

models (an underlying theme of the tutorial)

ÅMixture: Take a weighted average of the distributions.

ïIt can never be sharper than the individual distributions. 
Itôs a very weak way to combine models.

ÅProduct: Multiply the distributions at each point and then 
renormalize (this is how an RBM combines the distributions defined 
by each hidden unit)

ïExponentially more powerful than a mixture. The 
normalization makes maximum likelihood learning 
difficult, but approximations allow us to learn anyway.

ÅComposition: Use the values of the latent variables of one 
model as the data for the next model.

ïWorks well for learning multiple layers of representation, 
but only if the individual models are undirected.



Training a deep network
(the main reason RBMôs are interesting)

ÅFirst train a layer of features that receive input directly 

from the pixels.

ÅThen treat the activations of the trained features as if 

they were pixels and learn features of features in a 

second hidden layer.

ÅIt can be proved that each time we add another layer of 

features we improve a variational lower bound on the log 

probability of the training data.

ïThe proof is slightly complicated. 

ïBut it is based on a neat equivalence between an 

RBM and a deep directed model (described later)



The generative model after learning 3 layers

Å To generate data: 

1. Get an equilibrium sample 

from the top-level RBM by 

performing alternating Gibbs 

sampling for a long time.

2. Perform a top-down pass to 

get states for all the other 

layers.

So the lower level bottom-up 

connections  are not part of 

the generative model. They 

are just used for inference.

h2

data

h1

h3

2W

3W

1W



Why does greedy learning work?        
An aside: Averaging factorial distributions       

ÅIf you average some factorial distributions, you 

do NOT get a factorial distribution.

ïIn an RBM, the posterior over the hidden units 

is factorial for each visible vector.

ïBut the aggregated posterior over all training 

cases is not factorial (even if the data was 

generated by the RBM itself).



Why does greedy learning work?

Å Each RBM converts its data distribution 
into an aggregated posterior distribution 
over its hidden units. 

Å This divides the task of modeling its 
data into two tasks:

ïTask 1: Learn generative weights 
that can convert the aggregated 
posterior distribution over the hidden 
units back into the data distribution.

ïTask 2: Learn to model the 
aggregated posterior distribution 
over the hidden units.

ïThe RBM does a good job of task 1 
and a moderately good job of task 2.

Å Task 2 is easier (for the next RBM) than 
modeling the original data because the 
aggregated posterior distribution is 
closer to a distribution that an RBM can 
model perfectly.

data distribution 

on visible units

aggregated    

posterior distribution     

on hidden units

)|( Whp

),|( Whvp

Task 2

Task 1



Why does greedy learning work?

ä=
h

hvphpvp )|()()(

The weights, W,  in the bottom level RBM define 

p(v|h) and they also, indirectly, define p(h).

So we can express the RBM model as

If we leave p(v|h) alone and improve p(h), we will 

improve p(v). 

To improve p(h), we need it to be a better model of 

the aggregated posterior distribution over hidden 

vectors produced by applying W to the data.



Which distributions are factorial in a 

directed belief net?

ÅIn a directed belief net with one hidden layer, the 

posterior over the hidden units  p(h|v) is non-

factorial (due to explaining away).

ïThe aggregated posterior is factorial if the 

data was generated by the directed model.

ÅItôs the opposite way round from an undirected 

model which has factorial posteriors and a non-

factorial prior  p(h) over the hiddens. 

ÅThe intuitions that people have from using directed 

models are very misleading for undirected models.



Why does greedy learning fail in a directed module?

Å A directed module also converts its data 
distribution into an aggregated  posterior 

ïTask 1 The learning is now harder 
because the posterior for each training 
case is non-factorial.

ïTask 2 is performed using an 
independent prior. This is a very bad 
approximation unless the aggregated 
posterior is close to factorial.

Å A directed module attempts to make the 
aggregated posterior factorial in one step. 

ïThis is too difficult and leads to a bad 
compromise. There is also no 
guarantee that the aggregated 
posterior is easier to model than the 
data distribution.

data distribution 

on visible units

)|( 2Whp

),|( 1Whvp

Task 2

Task 1

aggregated    

posterior distribution     

on hidden units



A model of digit recognition

2000 top-level neurons

500 neurons

500 neurons

28 x 28 

pixel     

image

10 label 

neurons

The model learns to generate 

combinations of labels and images. 

To perform recognition we start with a 

neutral state of the label units and do 

an up-pass from the image followed 

by a few iterations of the top-level 

associative memory.

The top two layers form an 

associative memory  whose  

energy landscape models the low 

dimensional manifolds of the 

digits.

The energy valleys have names



Fine-tuning with a contrastive version of the 

ñwake-sleepò algorithm

After learning many layers of features, we can fine-tune 

the features to improve generation.

1.  Do a stochastic bottom-up pass

ïAdjust the top-down weights to be good at 

reconstructing the feature activities in the layer below.

2. Do a few iterations of sampling in the top level RBM

-- Adjust the weights in the top-level RBM.

3. Do a stochastic top-down pass

ïAdjust the bottom-up weights to be good at 

reconstructing the feature activities in the layer above.



Show the movie of the network 

generating digits

(available at www.cs.toronto/~hinton)



Samples generated by letting the associative 

memory run with one label clamped. There are 

1000 iterations of alternating Gibbs sampling 

between samples.



Examples of correctly recognized handwritten digits

that the neural network had never seen before           

Its very 

good



How well does it discriminate on MNIST test set with 

no extra information about geometric distortions?

ÅGenerative model based on RBMôs                   1.25%

ÅSupport Vector Machine  (Decoste et. al.) 1.4%   

ÅBackprop with 1000 hiddens (Platt)                 ~1.6%

ÅBackprop with 500 -->300 hiddens                  ~1.6%

ÅK-Nearest Neighbor                                        ~ 3.3%

ÅSee Le Cun et. al. 1998 for more results

ÅIts better than backprop and much more neurally plausible 

because the neurons only need to send one kind of signal, 

and the teacher can be another sensory input.



Unsupervised ñpre-trainingò also helps for 

models that have more data and better priors

ÅRanzato et. al. (NIPS 2006) used an additional 

600,000 distorted digits.

ÅThey also used convolutional multilayer neural 

networks that have some built-in, local 

translational invariance.

Back-propagation alone:                  0.49% 

Unsupervised layer-by-layer

pre-training followed by backprop:   0.39% (record)



Another view of why layer-by-layer    

learning works (Hinton, Osindero & Teh 2006)

ÅThere is an unexpected equivalence between 

RBMôs and directed networks with many layers 

that all use the same weights.

ïThis equivalence also gives insight into why 

contrastive divergence learning works.



An infinite sigmoid belief net 

that is equivalent to an RBM

ÅThe distribution generated by this 

infinite directed net with replicated 

weights is the equilibrium distribution 

for a compatible pair of conditional 

distributions: p(v|h) and p(h|v) that 

are both defined by W

ïA top-down pass of the directed 

net is exactly equivalent to letting 

a Restricted Boltzmann Machine 

settle to equilibrium.

ïSo this infinite directed net  

defines the same distribution as 

an RBM.

W

v1

h1

v0

h0

v2

h2

TW

TW

TW

W

W

etc.



ÅThe variables in h0 are conditionally 
independent given v0.

ïInference is trivial. We just 

multiply v0 by W transpose.
ïThe model above h0 implements 

a complementary prior.

ïMultiplying v0 by W transpose
gives the product of the likelihood 
term and the prior term.

ÅInference in the directed net is 
exactly equivalent to letting a 
Restricted Boltzmann Machine 
settle to equilibrium starting at the 
data.

Inference in a directed net 

with replicated weights

W

v1

h1

v0

h0

v2

h2

TW

TW

TW

W

W

etc.

+

+

+

+



ÅThe learning rule for a sigmoid belief 

net is:

ÅWith replicated weights this becomes:

W

v1

h1

v0

h0

v2

h2

TW

TW

TW

W

W

etc.

0

is

0

js

1

js

2

js

1

is

2

is

¤¤

+-

+-

+-

ij

iij

jji

iij

ss

sss

sss

sss

...)(

)(

)(

211

101

100

TW

TW

TW

W

W

)Ĕ( iijij sssw -´D



ÅFirst learn with all the weights tied

ïThis is exactly equivalent to 

learning an RBM

ïContrastive divergence learning 

is equivalent to ignoring the small 

derivatives contributed by the tied 

weights between deeper layers.

Learning a deep directed 

network

W

W

v1

h1

v0

h0

v2

h2

TW

TW

TW

W

etc.

v0

h0

W



ÅThen freeze the first layer of weights 

in both directions and learn the 

remaining weights (still tied 

together).

ïThis is equivalent to learning 

another RBM, using the 

aggregated posterior distribution 

of h0 as the data.

W

v1

h1

v0

h0

v2

h2

TW

TW

TW

W

etc.

frozenW

v1

h0

W

T
frozenW



How many layers should we use and how 

wide should they be? 

ÅThere is no simple answer. 

ïExtensive experiments by Yoshua Bengioôs group 

(described later) suggest that several hidden layers is 

better than one. 

ïResults are fairly robust against changes in the size of a 

layer, but the top layer should be big.

ÅDeep belief nets give their creator a lot of freedom. 

ïThe best way to use that freedom depends on the task.

ïWith enough narrow layers we can model any distribution 

over binary vectors (Sutskever & Hinton, 2007)



What happens when the weights in higher layers 

become different from the weights in the first layer?

ÅThe higher layers no longer implement a complementary 
prior.

ïSo performing inference using the frozen weights in 
the first layer is no longer correct.  But its still pretty 
good.

ïUsing this incorrect inference procedure gives a 
variational  lower bound on the log probability of the 
data. 

ÅThe higher layers learn a prior that is closer to the 
aggregated posterior distribution of the first hidden layer.

ïThis improves the networkôs model of the data.
ÅHinton, Osindero and Teh (2006) prove that this 

improvement is always bigger than the loss in the variational 
bound caused by using less accurate inference.



An improved version of Contrastive 

Divergence learning (if time permits)

ÅThe main worry with CD is that there will be deep 
minima of the energy function far away from the 
data. 

ïTo find these we need to run the Markov chain for 
a long time (maybe thousands of steps). 

ïBut we cannot afford to run the chain for too long 
for each update of the weights.

ÅMaybe we can run the same Markov chain over 
many weight updates? (Neal, 1992)

ïIf the learning rate is very small, this should be 
equivalent to running the chain for many steps 
and then doing a bigger weight update.



Persistent CD
(Tijmen Teileman, ICML 2008 & 2009)

ÅUse minibatches of 100 cases to estimate the 

first term in the gradient. Use a single batch of 

100 fantasies to estimate the second term in the 

gradient. 

ÅAfter each weight update, generate the new 

fantasies from the previous fantasies by using 

one alternating Gibbs update.

ïSo the fantasies can get far from the data.



Contrastive divergence as an 

adversarial game

ÅWhy does persisitent CD work so well with only 

100 negative examples to characterize the 

whole partition function?

ïFor all interesting problems the partition 

function is highly multi-modal.

ïHow does it manage to find all the modes 

without starting at the data? 



The learning causes very fast mixing

ÅThe learning interacts with the Markov chain.

ÅPersisitent Contrastive Divergence cannot be 

analysed by viewing the learning as an outer loop.

ïWherever the fantasies outnumber the 

positive data, the free-energy surface is 

raised. This makes the fantasies rush around 

hyperactively.



How persistent CD moves between the 

modes of the modelôs distribution

ÅIf a mode has more fantasy 

particles than data, the free-

energy surface is raised until 

the fantasy particles escape.

ïThis can overcome  free-

energy barriers that would 

be too high for the Markov 

Chain to jump.

ÅThe free-energy surface is 

being changed to help 

mixing in addition to defining 

the model.



Summary so far

ÅRestricted Boltzmann Machines provide a simple way to 
learn a layer of features without any supervision.

ïMaximum likelihood learning is computationally 
expensive because of the normalization term, but 
contrastive divergence learning is fast and usually 
works well.

ÅMany layers of representation can be learned by treating 
the hidden states of one RBM as the visible data for 
training the next RBM (a composition of experts).

ÅThis creates good generative models that can then be 
fine-tuned.

ïContrastive wake-sleep can fine-tune generation.



BREAK



Overview of the rest of the tutorial

ÅHow to fine-tune a greedily trained generative 

model to be better at discrimination.

ÅHow to learn a kernel for a Gaussian process.

ÅHow to use deep belief nets for non-linear 

dimensionality reduction and document retrieval.

ÅHow to learn a generative hierarchy of 

conditional random fields.

ÅA more advanced learning module for deep 

belief nets that contains multiplicative 

interactions.

ÅHow to learn deep models of sequential data.



Fine-tuning for discrimination

ÅFirst learn one layer at a time greedily.

ÅThen treat this as ñpre-trainingò that finds a good 
initial set of weights which can be fine-tuned by  
a local search procedure.

ïContrastive wake-sleep is one way of fine-
tuning the model to be better at generation.

ÅBackpropagation can be used to fine-tune the 
model for better discrimination.

ïThis overcomes many of the limitations of 
standard backpropagation.



Why backpropagation works better with 

greedy pre-training: The optimization view

ÅGreedily learning one layer at a time scales well 
to really big networks, especially if we have 
locality in each layer.

ÅWe do not start backpropagation until we already 
have sensible feature detectors that should 
already be very helpful for the discrimination task.

ïSo the initial gradients are sensible and 
backprop only needs to perform a local search 
from a sensible starting point.



Why backpropagation works better with 

greedy pre-training: The overfitting view

ÅMost of the information in the final weights comes from 
modeling the distribution of input vectors. 

ïThe input vectors  generally contain a lot more 
information than the labels.

ïThe precious information in the labels is only used for 
the final fine-tuning. 

ïThe fine-tuning only modifies the features slightly to get 
the category boundaries right. It does not need to 
discover features.

ÅThis type of backpropagation works well even if most of 
the training data is unlabeled. 

ïThe unlabeled data is still very useful for discovering 
good features.



First, model the distribution of digit images

2000 units

500 units 

500 units 

28 x 28 

pixel     

image

The network learns a density model for 

unlabeled digit images. When we generate 

from the model we get things that look like 

real digits of all classes. 

But do the hidden features really help with 

digit discrimination? 

Add 10 softmaxed units to the top and do 

backpropagation.

The top two layers form a restricted 

Boltzmann machine whose free energy 

landscape should model the low 

dimensional manifolds of the digits.



Results on permutation-invariant MNIST task

ÅVery carefully trained backprop net with      1.6% 
one or two hidden layers (Platt; Hinton)

ÅSVM (Decoste & Schoelkopf, 2002)                       1.4%

ÅGenerative model of joint density of             1.25% 
images and labels (+ generative fine-tuning)

ÅGenerative model of unlabelled digits          1.15% 
followed by gentle backpropagation                 
(Hinton & Salakhutdinov, Science 2006)



Learning Dynamics of Deep Nets

the next 4 slides describe work by Yoshua Bengioôs group

Before fine -tuning After fine -tuning



Effect of Unsupervised Pre-training

64

Erhan et. al.    AISTATSõ2009 



Effect of Depth

65

w/o pre -training
with pre -trainingwithout pre -training



Learning Trajectories in Function Space 
(a 2-D visualization produced with t-SNE)

ÅEach point is a 

model in function 

space

ÅColor = epoch

ÅTop: trajectories      

without pre-training. 

Each trajectory 

converges to a 

different local min.

ÅBottom: Trajectories 

with pre-training. 

ÅNo overlap!

Erhan et. al.    AISTATSõ2009 



Why unsupervised pre-training makes sense

stuff

image label

stuff

image label

If image-label pairs were 

generated this way, it 

would make sense to try 

to go straight from 

images to labels.  

For example,  do the 

pixels have even parity?

If image-label pairs are 

generated this way, it 

makes sense to first learn 

to recover the stuff that 

caused the image by 

inverting the high 

bandwidth pathway.

high 

bandwidth
low 

bandwidth



Modeling real-valued data

ÅFor images of digits it is possible to represent 

intermediate intensities as if they were probabilities by 

using ñmean-fieldò logistic units.

ïWe can treat intermediate values as the probability 

that the pixel is inked.

ÅThis will not work for real images.

ïIn a real image, the intensity of a pixel is almost 

always almost exactly the average of the neighboring 

pixels.

ïMean-field logistic units cannot represent precise 

intermediate values.



Replacing binary variables by 

integer-valued variables
(Teh and Hinton, 2001)

ÅOne way to model an integer-valued variable is 

to make N identical copies of a binary unit. 

ÅAll copies have the same probability,                               

of being ñonò :  p = logistic(x)

ïThe total number of ñonò copies is like the 

firing rate of a neuron.

ïIt has a  binomial distribution with mean N p 

and variance N p(1-p)



A better way to implement integer values

ÅMake many copies of a binary unit. 

ÅAll copies have the same weights and the same 

adaptive bias, b, but they have different fixed offsets to 

the bias:

....,5.3,5.2,5.1,5.0 ---- bbbb

­x



A fast approximation

ÅContrastive divergence learning works well for the sum of 

binary units with offset biases.

ÅIt also works for rectified linear units. These are much faster 

to compute than the sum of many logistic units.

output = max(0,  x + randn*sqrt(logistic(x))  )

)1log()5.0(logistic

1

x
n

n

enx +º-+ä
¤=

=



How to train a bipartite network of rectified 

linear units

ÅJust use contrastive divergence to lower the energy of 
data and raise the energy of nearby configurations that 
the model prefers to the data.

data>< jihv

recon>< jihv

i

j

i

j

)( recondata ><-><=D jijiij hvhvw e

Start with a training vector on the 

visible units.

Update all hidden units in parallel 

with sampling noise

Update the visible units in parallel 

to get a ñreconstructionò.

Update the hidden units againreconstructiondata



3D Object Recognition: The NORB dataset

Stereo-pairs of grayscale images of toy objects.

- 6 lighting conditions, 162 viewpoints

-Five object instances per class in the training set

- A different set of five instances per class in the test set

- 24,300 training cases, 24,300 test cases

Animals

Humans

Planes

Trucks

Cars

Normalized-

uniform 

version of 

NORB



Simplifying the data

ÅEach training case is a stereo-pair of 96x96 images.

ïThe object is centered.

ïThe edges of the image are mainly blank.

ïThe background is uniform and bright.

ÅTo make learning faster I used simplified the data:

ïThrow away one image.

ïOnly use the middle 64x64 pixels of the other 

image.

ïDownsample to 32x32 by averaging 4 pixels.



Simplifying the data even more so that it can 

be modeled by rectified linear units

ÅThe intensity histogram for each 32x32 image has a 

sharp peak for the bright background.

ÅFind this peak and call it zero.

ÅCall all intensities brighter than the background zero.

ÅMeasure intensities downwards from the background 

intensity.

0



Test set error rates on NORB after greedy 

learning of one or two hidden layers using 

rectified linear units 

Full NORB (2 images of 96x96)

ÅLogistic regression on the raw pixels                20.5%

ÅGaussian SVM (trained by Leon Bottou)           11.6%

ÅConvolutional neural net  (Le Cunôs group)        6.0%

(convolutional nets have knowledge of translations built in)                                           

Reduced NORB (1 image 32x32)

ÅLogistic regression on the raw pixels                 30.2%

ÅLogistic regression on first hidden layer            14.9% 

ÅLogistic regression on second hidden layer      10.2%



The 

receptive 

fields of 

some 

rectified 

linear 

hidden 

units.



A standard type of real-valued visible unit

ÅWe can model pixels as 
Gaussian variables. 
Alternating Gibbs 
sampling is still easy, 
though learning needs to 
be much slower.

ijj

ji i

iv

hidj

jj

visi i

ii whhb
bv

,E äää --
-

=
,

2

2

2

)(
)(

s
ee s

hv

E
 Ą

energy-gradient 

produced by the total 

input to a visible unit

parabolic 

containment 

function

­ii vb

Welling et. al. (2005) show how to extend RBMôs to the 

exponential family. See also Bengio et. al. (2007)



A random sample of 10,000 binary filters learned 

by Alex Krizhevsky on a million 32x32 color images.



Combining deep belief nets with Gaussian processes

ÅDeep belief nets can benefit a lot from unlabeled data 
when labeled data is scarce.

ïThey just use the labeled data for fine-tuning.

ÅKernel methods, like Gaussian processes, work well on 
small labeled training sets but are slow for large training 
sets.

ÅSo when there is a lot of unlabeled data and only a little 
labeled data, combine the two approaches:

ïFirst learn a deep belief net without using the labels.

ïThen apply a Gaussian process model to the deepest 
layer of features. This works better than using the raw 
data.

ïThen use GPôs to get the derivatives that are back-
propagated through the deep belief net. This is a 
further win. It allows GPôs to fine-tune complicated 
domain-specific kernels.



Learning to extract the orientation of a face patch 
(Salakhutdinov & Hinton, NIPS 2007)



The training and test sets for predicting 

face orientation

11,000 unlabeled cases100, 500, or 1000 labeled cases

face patches from new people



The root mean squared error in the orientation 

when combining GPôs with deep belief nets

22.2         17.9          15.2

17.2         12.7            7.2

16.3         11.2            6.4

GP on 

the 

pixels

GP on 

top-level 

features

GP on top-level 

features with 

fine-tuning

100 labels

500 labels

1000 labels

Conclusion: The deep features are much better 

than the pixels. Fine-tuning helps a lot.



Deep Autoencoders
(Hinton & Salakhutdinov, 2006)

ÅThey always looked like a really 

nice way to do non-linear 

dimensionality reduction:

ïBut it is very difficult to 

optimize deep autoencoders 

using backpropagation.

ÅWe now have a much better way 

to optimize them:

ïFirst train a stack of 4 RBMôs

ïThen ñunrollò them.  

ïThen fine-tune with backprop.

1000  neurons

500 neurons

500 neurons

250 neurons

250 neurons

30

1000  neurons

28x28

28x28

1

2

3

4

4

3

2

1

W

W

W

W

W

W

W

W

T

T

T

T

linear 

units



A comparison of methods for compressing 

digit images to 30 real numbers.

real              

data

30-D       

deep auto

30-D logistic 

PCA

30-D         

PCA


