Preference Learning in Recommender Systems

M. de Gemmis L. Iaquinta P. Lops C. Musto F. Narducci G. Semeraro

Department of Computer Science
University of Bari, Italy

ECML/PKDD workshop on Preference Learning, 2009
1. Background and Motivation

2. Basics of Recommender Systems
 - Collaborative Recommender Systems
 - Content-based Recommender Systems
 - Other Approaches

3. Learning User Preferences in Recommender Systems
 - Feedback Gathering
 - Modeling User Preferences
 - Techniques for Learning User Profiles

4. Conclusions
Information Overload Problem

- Large quantity of information makes retrieval a hard task
- Dynamic and heterogeneous nature (such as in the Web) makes user overwhelmed

Needs

- Intelligent information access
- Personalized support in sifting through large amounts of available information
 - according user interests and preferences
Information Filtering and User Profile

- Information Filtering systems rely on user model (profile) to be tailored on user needs.
- Personalized recommendations require:
 - a user profile
 - an algorithm to update the profile given usage/input information
 - an adaptive tool that exploits the profile in order to provide personalization
- Profile content depends on the goals of the system and the recommendation approach.
Recommender Systems

Everyday we get advices from other people
 - “Hey, check out this Web site”
 - “I saw this book, you will like it”
 - “That restaurant is very good!”

When making a choice in the absence of decisive first-hand knowledge, choosing as other like-minded people have chosen in the past may be a good strategy

Recommender systems have the same role as human recommendations: they present information that they perceive to be useful and worth trying out
Collaborative Recommender Systems

- Recommendations are based on evaluations of users who share similar interests
- **Assumption**: a set of users which liked the same items in the past probably share the same preferences
- Thus, recommendations concern items
 - unseen by the active user
 - liked by other users with similar tastes
- Opinions on items expressed
 - as explicit user ratings
 - on some scale ranging from bad to good
 - as implicit ratings given by user behavior
- User profiles consist of ratings
Recommendation approach

- User profiles are compared to find overlaps in interests among users

- The nearest neighbor approach
 - finds similar users
 - creates the nearest neighbors set for each user
 - infers the like degree for an unseen item based on the nearest neighbors behavior

- Essentials
 - many people must participate (increasing the likelihood that any one person will find other users with similar preferences)
 - easy way to represent user interests
 - matching algorithms for users with similar interests
Issues

- **NEW USER PROBLEM** - Accurate recommendations follow system preference learning from user ratings
- **NEW ITEM PROBLEM (EARLY RATER)** - Items would not be recommended until rated by a substantial number of users
- **SPARSITY PROBLEM** - The number of ratings obtained is usually very small compared to the number of predictions
- **GREY SHEEP PROBLEM (UNUSUAL USER)** - Individuals not consistently agree or disagree with any group of people
- **SCALABILITY PROBLEM** - A large amount of data from each user and a large number of users are required
- **LACK OF TRANSPARENCY PROBLEM** - *Black boxes* like oracles which give advice but cannot be questioned
 - no trust indicators
 - acceptance in low-risk content domains
Content-based Recommender Systems

- Recommendations based on **contents** describing the items
- Descriptions with attributes varying in **number and type**
 - same small number of attributes with known set of values
 - unstructured text
 - can be represented by the **Vector Space Model**
 - textual metadata represented by vectors in a n-dimensional space
 - each dimension corresponds to a term from the overall vocabulary
 - vector components are **term weights** that indicate the degree of association between the textual metadata and the term (dimension)
Recommendation approach

- User profiles based on some features of rated objects
- Item relevance by matching item representation against user profile
 - binary relevance judgment
 - continuous relevance judgment
 ⇒ ranked list of potentially interesting items
- For instance, with the Vector Space Model, matching as cosine similarity of vectors
- Asking users for feedback on the recommended items
 ⇒ matching performed according to the relevance feedback
Content-based Vs Collaborative Approaches

Advantages

- **USER INDEPENDENCE** - Solely ratings provided by the active user to build her own profile
- **TRANSPARENCY** - Explanations as list of content features or descriptions that caused the recommendation
- **NEW ITEM** - Recommendations rely on item descriptions even for items not yet rated
Content-based Vs Collaborative Approaches

Shortcomings

- **LIMITED CONTENT ANALYSIS** - Content-based techniques are limited by the features that are associated either automatically or manually with the items
 - Does content contain enough information to distinguish liked items from disliked items?
 - Does the representation capture all the aspects that influence the user experience?

- **OVER-SPECIALIZATION** - Recommendations of items (too) similar to those already (highly) rated

- **NEW USER** - Enough ratings have to be collected to understand user preferences and to provide accurate recommendations
Demographic Recommender Systems

- Recommendations based on demographic classes
- Categorization of users starting from personal attributes
- Data in user model can vary greatly
 - hand-crafted attributes with numeric confidence values [Grundy, 1994]
 - features from users’ home pages [Pazzani, 1999]
- **Benefit**: the history of user ratings is not required
- **Shortcoming**: demographic data is difficult to collect
Knowledge-based Recommender Systems

- Recommendations based on a knowledge-based
 - about how a particular item meets a particular user need
 - reasoning about the relationship between a need and a possible recommendation
- Some system implements case-based reasoning
 - the recommender solves a new problem looking up a similar past solved one. Main steps:
 - [Retrieve] looks for a case similar to the new problem
 - [Reuse] reuses the retrieved solution
 - [Adaptation] makes some adaptation (if necessary)
 - [Retain] stores the new adapted case in the case-library
- User preference elicitation not required
 - recommendation algorithm ~ retrieve the most similar case
- No ramp-up problem (“early rater” & “sparse ratings”)
 - since its recommendations do not depend on user ratings
- Approach is complementary to others
Hybrid Recommender Systems

- Combine two or more recommender algorithms in order to emphasize strengths and to level out weaknesses

Hybridization methods

- **Weighted** - The recommending score is computed from the results of all of the available recommendation techniques, e.g., by linear combination
- **Switching** - Some criterion to switch between recommendation techniques
- **Mixed** - Recommendations from several different recommenders are presented at the same time
Hybridization methods (cont.)

- **FEATURE COMBINATION** - Features from different recommendation sources are thrown together into a single recommendation algorithm
 - e.g., collaborative information as additional feature of content-based data
- **CASCADE** - one recommender refines the recommendations given by another one as a staged process
- **FEATURE AUGMENTATION** - Output from one technique is used as an input feature to another
- **META-LEVEL** - The model learned by one recommender is used as input to another
Learning User Preferences in Recommender Systems

- **Preference**: an ordering relation between two or more items to characterize which, among a set of possible choices, is the one that best fits user tastes [Brafman & Domshlak, 2009]
 - *Preferences* are something able to guide choices, discriminating items user likes from those she doesn’t like (or she likes the least)

- **Learning user preferences**: a way to find the solution of a research (or optimization) problem whose space of possible solutions is represented by the set of the items the user can be recommended
 - The complexity is strictly related to the number of dimensions used to represent the set of possible choices
 - Gathering user feedbacks allows to generate user profiles catching information about user preferences
The Information Filtering and Information Retrieval systems rely on *relevance feedback* to capture an *appropriate snapshot* of user information needs.

- User is allowed to directly express her notion of relevance with respect to individual documents.

Relevance feedback employed in several classes of personalization systems:

- Initially introduced to support basic query expansion.
- Mean to elicit user information needs.
- Based on an explicit or implicit feedback gathering:
 - **Explicit**: Object ratings are provided explicitly by users.
 - **Implicit**: Object relevance is inferred in a transparent fashion, by monitoring user interactions with the system.
Explicit Ratings

- Explicit ratings is common in everyday
 - in free text form (e.g. book reviews)
 - on an agreed discrete scale (e.g. star ratings for restaurants, marks out of ten for films, etc.)
 - judgments easier to process statistically
- The evaluator has to examine an item and assign it a value on the rating scale
- **Cognitive cost**: the act of rating alters the user behavior from her normal interaction pattern
 - users tend to skip the rating task

de Gemmis, Iaquinta, Lops, Musto, Narducci, Semeraro
Preference Learning in Recommender Systems
Explicit Ratings

- Disregard user knowledge on the current topic
 - When users are unclear about their search interests
 - browse for more information to clarify their need
 - re-formulate their query accordingly
 - The uncertainty in search episodes increases the cognitive load during explicit relevance feedback
 - decide on the relevance of items with a lack of confidence

- Privacy issues
 - Users are not always comfortable in providing direct indications of their interests
 - Obtrusive nature of explicit ratings ⇒ not many users are willing to provide them ⇒ dearth of ratings ⇒ the performance of profile capturing and recommendation algorithms degrades
 - the sparsity of judgments can often render collaborative filtering recommender systems unusable

Privacy issues
Explicit Ratings by Critiquing Examples

- Users are required to critique possible solutions
 - Planing travel arrangements: “the arrival time of this flight leg is too late.”

- Cyclical interaction
 - the system provides example solutions
 - the user examines them and may state critiques
 - a critique becomes an additional preference in the model
 - the system refines the solution set

- Motivation: people usually cannot state preferences in advance; construct them according to the available options
 - The critiques come in response to shown examples ⇒ the current solutions can hinder the user from refocusing the search in another direction (the anchoring effect)
 - A complete preference model can be acquired only if the system is able to stimulate the user
Implicit Ratings

- Proposed as unobtrusive alternative or supplement to explicit ratings in order to state (indirect) assessment about usefulness of any individual item
- Passive monitoring of user interactions with the system
 - Click-throughs, time spent viewing a document, mouse gestures, ...
- Removing the cognitive cost of explicit relevance feedback
- Implicit judgments are often considered less indicative than explicit ratings
Feedback gathering techniques allow to collect information about user tastes and interests.

Collected information had to be modeled following a specific representation:

- **Structured data** (e.g. generic ratings or some well-defined attribute-value pairs) can be represented through a matrix.
- **Unstructured data** (usually exploited by content-based recommenders) had to be processed through some Information Retrieval-related techniques (e.g. stemming, lemmatization, indexing) to shift from a textual source to a structured one.
- More complex representations (semantic or neural networks, probabilistic models, etc.)
Recommendations techniques can be grouped into two general classes [Adomavicius & Tuzhilin, 2005]: model-based and memory/heuristic based.

Same classification for learning user profiles:

- **Offline learning techniques**: used in model-based recommenders in domains where user preferences change slowly with respect to the time needed to build the model.
- **Online learning techniques**: used in memory-based recommenders to build and update the model in order to make recommendations in real-time.

Machine Learning techniques allow to fulfil the task of learning user profiles in model-based recommenders.
Common approach: build a classifier, i.e. a model able to assign a category to a specific input

- Learning user profiles problem becomes a binary categorization task: each item has to be classified as interesting or not with respect to the user preferences

- The classifier is learned by an inductive process from a training set, i.e. a collection of items labeled with the categories they belong to

- Classifiers implemented by machine learning strategies (e.g. probabilistic approaches, neural networks, decision trees, association rules and Bayesian networks)
Naïve Bayes

- Generate a probabilistic model based on previously observed data
- Used in content-based recommenders
- The model estimates the *a posteriori* probability, $P(c|d)$, of document d belonging to class c

 $P(c)$ the prob. of observing a document in class c
 $P(d|c)$ the prob. of observing the document d given c
 $P(d)$ the prob. of observing the instance d

Bayes theorem

$$P(c|d) = \frac{P(c)P(d|c)}{P(d)}$$

To classify the document d, the class with the highest probability is chosen: $c = \arg\max_{c_j} \frac{P(c_j)P(d|c_j)}{P(d)}$

- $P(d)$ is generally removed as it is equal for all c_j
Naïve Bayes

\[P(d|c) \text{ in } P(c|d) = \frac{P(c)P(d|c)}{P(d)} \]
estimated by the training data

- Estimating \(P(d|c) \) in this way is problematic: it is very unlikely to see the same document more than once; the observed data is generally not enough to be able to generate good probabilities
- **Simplify the model by the independence assumption:** all the words or tokens in the observed document \(d \) are conditionally independent of each other given the class

- Although naïve Bayes performances are not as good as some other statistical learning methods (e.g. nearest-neighbor classifiers or support vector machines), it has been shown that it can perform well in the classification tasks where the computed probability is not important
- Advantage: efficient and easy to implement
Rocchio’s Method

- Some linear classifiers consist of an explicit profile (or prototypical document) of the category.
- The Rocchio’s method is used for inducing linear, profile-style classifiers.
- Adaptation to text categorization of the Rocchio’s formula for relevance feedback in the Vector Space Model:
 - documents as vectors \Rightarrow
 - documents with similar content have similar vectors.
- Learning is achieved by combining document vectors (of positive and negative examples) into a prototype vector for each class in the set of classes C.
- Classify a new document d: assign d to the class with the most similar prototype vector.
 - for example by using the cosine similarity measure.
Rocchio’s method

- Classifier for category c_i: $\vec{c}_i = \langle \omega_{1i}, \ldots, \omega_{T|i} \rangle$

 - T is the vocabulary, i.e. the set of terms in the training set

 \[
 \omega_{ki} = \beta \cdot \sum_{\{d_j \in POS_i\}} \frac{\omega_{kj}}{|POS_i|} - \gamma \cdot \sum_{\{d_j \in NEG_i\}} \frac{\omega_{kj}}{|NEG_i|}
 \]

 - ω_{kj} is the TF-IDF weight of the term t_k in document d_j
 - POS_i and NEG_i are the set of positive and negative examples in the training set for the specific class c_j
 - β and γ are control parameters that allow setting the relative importance of all positive and negative examples

- To assign a class \tilde{c} to a document d_j, the similarity between each prototype vector \vec{c}_i and the document vector \vec{d}_j is computed and \tilde{c} will be the c_i with the highest value of similarity
Decision Trees Learners

- **Decision trees**: trees in which
 - internal nodes are labeled by terms
 - branches departing from them are labeled by tests on the weight that the term has in the test document
 - leafs are labeled by categories

- Decision trees are built by recursively partitioning training data into subgroups
 - until subgroups contain only instances of a single class

- The test for partitioning data is run on the weights that the terms labeling the internal nodes have in the document

- The choice of the term on which to operate the partition is generally made according to an information gain or entropy criterion
Decision Rule Classifiers

- Similar to decision trees
 - operate a recursive data partitioning
- Tend to generate more compact classifiers
- Attempt to select from all the possible covering rules (i.e. rules that correctly classify all the training examples) the “best” one according to some minimality criterion.
- Examples of inductive learning techniques
 - Ripper [Cohen, 1995]
 - Slipper [Cohen & Singer, 1999]
 - CN2 [Clark & Niblett, 1989]
 - C4.5rules [Quinlan, 1994]
Neural networks model complex relationships between input and output cells.

The user interests are represented by the output cells and each of them are achievable by a specific pattern in the network.

When an error occurs, there is a backward propagation until the responsible cell is achieved, so the cell parameters are adjusted.
Bayesian Network

- It represents a probability distribution by a direct acyclic graph
 - nodes: random variables; represent attributes
 - arcs: relations among random variables; represent probability correlations
- Employed to model quantitative and qualitative relationships between items that users have liked
- Generally used in those situations where user interests change slowly
Nearest Neighbor Algorithms

- Store training data in memory and classify a new unseen item by comparing it to all stored items by using a similarity function
 - for example the cosine similarity measure is adopted when items are represented using the Vector Space Model

- The “nearest neighbor” or the “k-nearest neighbors” items are determined, and the class label for the unclassified item is derived from the class labels of the nearest neighbors

- Nearest neighbor algorithms are quite effective, although the most important drawback is their inefficiency at classification time, since they do not have a true training phase
Conclusions

- Survey of the methods for learning user profiles in recommender systems
 - Introduction to the basics of recommender systems
 - describing the main approaches presented in literature, namely the content-based and the collaborative one. We also introduced other important approaches, such as the demographic and the knowledge-based one, and some hybrid systems combining different types of recommendation strategies
 - Focus on the process of learning user preferences in recommender systems
 - techniques to get implicit or explicit user feedback
 - the most successful and widely used machine learning methods to learn user profiles in recommender systems