Dynamics of large networks
Web today – Diverse applications
Web today – Millions of users

Large scale
Millions of users
Web today – Rich content

Rich user generated content
Web today – Highly dynamic

Content is constantly being updated and changed
Web today – Traces of activity

Massive traces of human social activity are collected
Web today – Rich interactions

Rich interactions between users and content
Web today – Interaction networks

Modeled as interaction network
Web today – Immense possibilities

Web is like a “laboratory” for studying millions of humans
Testing the Small-world hypothesis

Network of who talks to whom on MSN Messenger: 240M nodes, 1.3 billion edges

Average path length is 6.6
90% of nodes is reachable <8 steps
Why study web and networks?

- **Build understanding and theory:**
 - How users create content and interact with it and among themselves?

- **Build better on-line applications:**
 - How to design better services and algorithms?
Thesis: Network dynamics

- Network evolution
 - How network structure changes as the network grows and evolves?

- Diffusion and cascading behavior
 - How does information and diseases spread over networks?
Observations: measuring

Q: How does network structure evolve?

A: Networks densify and diameter shrinks

\[E(t) \propto N(t)^\alpha \]

Network diameter shrinks over time

[Densification]

[Diameter]
Models: understanding

Q: What is a good model/explanation?

A: Forest Fire model
Thesis: Network evolution (3)

- **Algorithms**: doing things better
 - **Q**: How to generate realistic graphs?
 - **A**: Kronecker graphs

![Diagram of Kronecker graph generation](image)
Observations: measuring

Q: How does information propagate over the web?
Models: understanding

Q: How to information propagation

A: Zero-crossing model
Thesis: Diffusion and cascades (3)

- **Algorithms**: doing things better
 - **Q**: How to identify influential nodes and epidemics?
 - **A**: **CELF** (cost-effective lazy forward-selection)

[w/ Krause, Guestrin, Glance and Faloutsos KDD '07]
Thesis: Size matters

- Massive data:
 - MSN Messenger network [w/ Horvitz, WWW ’08]
 ▪ 240M people, 255B messages
 - Product recommendations [w/ Adamic, Huberman EC ‘06]
 ▪ 4M people, 16M recommendations
 - Blogosphere [w/ Backstrom, Kleinberg KDD ‘09]
 ▪ 164M posts, 127M links

- Benefit: Properties become “visible”
 - E.g.: In large networks only small clusters exist
 [w/ Dasgupta, Lang and Mahoney WWW ’08]
Thesis: Reflections

- Why are networks the way they are?
- Only recently have basic properties been observed on a large scale
 - Confirms social science intuitions; calls others into question
- What are good tractable network models?
 - Builds intuition and understanding
- Benefits of working with large data
 - Observe structures not visible at smaller scales
Why are networks the way they are?

Richer networks, richer more detailed data
- New findings and observations

More accurate models
- Predictive modeling

Large scale
- Will find phenomena and emergent patterns not visible at small scales
Future directions

- **Global predictive models**
 - Online massively multi-player games

- **Information diffusion**
 - When, where and what post will create a cascade?

- **Where to tap the network to get right effects?**
 - Social Media Marketing

- **Steering the evolution of the network**
 - Cultivating the social network
What’s next?

Observations:
Data analysis

Actively influencing the network

Models:
Predictions

Algorithms:
Applications
Acks

Susan Dumais
Andrew Tomkins
Ravi Kumar
Lada Adamic
Bernardo Huberman
Kevin Lang
Michael Manohey
Zoubin Gharamani
Anirban Dasgupta
Tom Mitchell
John Lafferty
Larry Wasserman
Avrim Blum
Sam Madden
Michalis Faloutsos
Ajit Singh
THANKS!

Questions: jure@cs.stanford.edu
Thesis: Google: Jure thesis
Data + Code: http://snap.stanford.edu