
First-order Models for
Sequential Decision-making

Scott Sanner

Insights, Caveats, and

Tricks-of-the-Trade

Warning

• This talk is about:

• But wait, don’t leave…

– Overlap with and extensions of lifted inference

• FOPI / FOVE

– In the end, we learn in order to make decisions!

Statistical Relational Learning

Probabilistic Planning

{ SRL, ILP,
Human expert }

provide the model

Talk Summary

• Relational models are natural for many
sequential decision-making problems

• But most sequential planners ground the
relational model
– thus throwing away all relational structure

• Potential gains with lifted relational solutions
– interpretability

– time and space efficiency

� scalability

Focus of

this talk

Talk Outline

• First-order MDPs (FOMDPs)
– “a first model” for first-order sequential decision theory

– basic ideas and highlights

• Caveats of FOMDPs and workarounds
– limitations and enhancements

– tricks-of-the-trade

• Extensions
– factored FOMDP

– first-order POMDP

First-order MDPs
without the BS

Scott Sanner

Bunch of
Symbols

Relational Planning Languages

• Common languages:
– (P)STRIPS
– (P)PDDL

• more expressive than STRIPS
• for example, universal and conditional effects:

(:action put-all-blue-blocks-on-table
:parameters ()
:precondition ()
:effect (forall (?b)

(when (Blue ?b)
(not (OnTable ?b)))))

– General Game Playing (GGP)
• one or more agents

• Relational planning problem:

(:action load-box-on-truck-in-city
:parameters (?b - box ?t - truck ?c – city)
:precondition (and (BIn ?b ?c) (TIn ?t ?c))
:effect (and (On ?b ?t) (not (BIn ?b ?c))))

London
Paris

Rome
Berlin MoscowLogistics:

How to Solve?

• Or solve lifted specification for all domains at once?

• Solve ground problem for each domain instance?

- 3 trucks: 2 planes: 3 boxes:

Case Statement

� 〈〈〈〈S,A,T,R〉〉〉〉 for FOMDPs defined in terms of case

� e.g., reward case in Logistics FOMDP:

¬¬¬¬ ∃∃∃∃b. BoxIn(b, paris, s)

∃∃∃∃b. BoxIn(b, paris, s)

0

1

rCase(s) =

Disjoint partitioning

of world states
Quantified

formulae

Case Operations

� Operators: Define unary & binary case operations

� E.g., can take “cross-sum” / (or 1, 0) of cases…

=////
20¬φ

10 φ

4¬ψ

3ψ

13φ ∧ ψ

14φ ∧ ¬ψ

24¬φ ∧ ¬ψ

23¬φ ∧ ψ

Inconsistent
partitions should

be removed for
compactness

First-order Regression Planning

• Use regression to back-chain through actions

• Use ∃∃∃∃ to tell if valid action instantiation exists

unload(b ∗, t ∗) ∃b.BoxIn(b, paris, s)

∃b∗, t∗.BoxOn(b∗, t∗, s) ∧ TruckIn(t∗, paris, s)

∨ ∃b.BoxIn(b, paris, s)

…

…

Goal State

[Reiter’s Default Solution to Frame Problem]

First-order Regression Planning

• Define abstract

goal / reward, e.g.,

• Can take expectation
over deterministic

outcomes for

decision-theoretic
regression

1-step-to-go

2-steps-to-go

3-steps-to-go

n-steps-to-go

∃b.BoxIn(b, paris, s)

Symbolic Dynamic Programming

• What value if 0-stages-to-go?
– Obviously V0(s) = rCase(s)

• What value if 1-stage-to-go?
– We know Q-value for each action (regress + ∃ quantification)

Q1(s, load(b,t))

Q1(s, unload(b,t))

ϕ2

ϕ1

0

9

ϕ4

ϕ3

1

3

V1(s) =

=

=

maxs

Symbolic Dynamic Programming

• What value if 0-stages-to-go?
– Obviously V0(s) = rCase(s)

• What value if 1-stage-to-go?
– We know Q-value for each action (regress + ∃ quantification)

Q1(s, load(b,t))

Q1(s, unload(b,t))

ϕ2

ϕ1

0

9

ϕ4

ϕ3

1

3

V1(s) =

=

=ϕ1
9

Symbolic Dynamic Programming

• What value if 0-stages-to-go?
– Obviously V0(s) = rCase(s)

• What value if 1-stage-to-go?
– We know Q-value for each action (regress + ∃ quantification)

Q1(s, load(b,t))

Q1(s, unload(b,t))

ϕ2

ϕ1

0

9

ϕ4

ϕ3

1

3

V1(s) =

=

=
3else ϕ3

ϕ1
9

Symbolic Dynamic Programming

• What value if 0-stages-to-go?
– Obviously V0(s) = rCase(s)

• What value if 1-stage-to-go?
– We know Q-value for each action (regress + ∃ quantification)

Q1(s, load(b,t))

Q1(s, unload(b,t))

ϕ2

ϕ1

0

9

ϕ4

ϕ3

1

3

V1(s) =

=

=
3else ϕ3

1else ϕ4

ϕ1
9

• Value iteration: [Boutilier, Reiter, & Price, IJCAI-01]

– Obtain Vn+1 from Vn until (Vn+1 0 Vn) < ε

Symbolic Dynamic Programming

• What value if 0-stages-to-go?
– Obviously V0(s) = rCase(s)

• What value if 1-stage-to-go?
– We know Q-value for each action (regress + ∃ quantification)

Q1(s, load(b,t))

Q1(s, unload(b,t))

ϕ2

ϕ1

0

9

ϕ4

ϕ3

1

3

3else ϕ3

1else ϕ4

else ϕ2

ϕ1

0

9

V1(s) =

=

=

Ex: First Two Steps of SDP

V 1(s) =

∃b.BoxIn(b, paris, s) : 19.0
¬“ ∧ ∃b, t.TruckIn(t, paris, s) ∧ BoxOn(b, t, s) : 8.1
¬“ : 0.0

V 2(s) =

∃b.BoxIn(b, paris, s) : 26.1
¬“ ∧ ∃b, t.TruckIn(t, paris, s) ∧ BoxOn(b, t, s) : 15.4
¬“ ∧ ∃b, c, t.BoxOn(b, t, s) ∧ TruckIn(t, c, s) : 7.3
¬“ : 0.0

V 0(s) = R(s) =
∃b.BoxIn(b, paris, s) : 10
¬∃b.BoxIn(b, paris, s) : 0

Correctness of SDP

• Show SDP for FOMDPs is correct w.r.t. ground MDP:

Ground
MDP

FOMDP Value
Function

Ground MDP
Value Function

Ground MDP Solution

First-order
(FO) MDP

G
ro

u
n

d

Lifted FOMDP Solution

G
ro

u
n

d

[Boutilier, Reiter, & Price, IJCAI-01]

Where are we?

• Loosely defined the FOMDP

• Described how it is possible to find a lifted
solution independent of domain size

– Exploits state abstraction

– Exploits action abstraction (∃)

First-order MDPs

Scott Sanner

Caveats &

Workarounds

Caveats of First-order Planning I

• Many problems have topologies

– e.g, reachability constraints in logistics

• If topology not fixed a priori…

– first-order solution must consider ∞ topologies

• e.g., if Moscow reachable from Rome in five steps…

– in general case, leads to ∞ values / policy

London
Paris

Rome
Berlin

Moscow

Fix your topology!

Caveats of First-order Planning II

• ∀ Rewards

• Value function must distinguish ∞ cases

R(s) =
∀b, c.Dst(b, c) → BoxIn(b, c, s) : 1
¬“ : 0

V t(s) =

∀b, c.Dst(b, c) → BoxIn(b, c, s) : 1
One box not at destination : γ

Two boxes not at destination : γ2

... :
...

t− 1 boxes not at destination : γt−1

• Policy will also likely be ∞

– Some notable exceptions (put all blocks on table)

identical goals �lifted goal decomposition

Caveats of First-order Planning III

• Unreachable States
– (P)PDDL domains often under-constrained

• BlocksWorld: 2 blocks cannot be on a 3rd block
• Logistics: 1 box cannot be in 2 cities at once

– But nowhere are these constraints encoded!

• If no background theory to restrict legal states
– First-order planning must solve for all states

– Where most are illegal!

• But if initial states known…

First-order Real-time DP

• Simulate trials and do DP at every visited state
– We know Q-value for each action (regress + ∃ quantification)

Q1(s, load(b,t))

Q1(s, unload(b,t))

ϕ2

ϕ1

0

9

ϕ4

ϕ3

1

3

V1(s) =

=

=

maxs

• Lifted Symbolic DP at every step

• Ground evaluation to find partitions for current state

– no theorem proving for consistency checking!

• Restrict lifted value function to reachable states

Caveats of First-order Planning IV

• Value function may grow very large

V t(s) =

φ1 : 100.0
φ2 : 10.0
φ3 : 2.5
... :

...
φ10000 : 1.1

• Need compact data structures and / or
approximations…

• Convert to first-order ADD

b

a

1 0

case =

First-order ADDs
• Want to compactly represent:

0

1
case =

¬ ”

Var ⇔ FOL KB Var

b

a

∃x.[A(x) ∨ ∀y.A(x) ∧B(x) ∧ ¬A(y)]

[∃x.A(x)] ∨ ([∃x.A(x) ∧ B(x)] ∧ [∀y.¬A(y)])

≡ [∃x.A(x)]

≡ [∃x.A(x) ∧B(x)]

1

a

0

=First-order CSI!

• Push down quantifiers, expose prop. structure:

a ∨ (b ∧ ¬a)
0

1
case =

¬ ”

FO-ADDs are Compact!
• Lifted reward for Logistics

• Lifted value function for Logistics

∃b, t.T In(t,Paris, s) ∧On(b, t, s)

∃b, t. On(b, t, s)89 : unload(b, t)

80 : drive(t,Paris)

…72 : load(b, t)

∃b, c. BoxIn(b, c, s) ∧ ∃t.T In(t, c, s)

rCase(s) =

10 0

∃b. BIn(b,Paris, s)

vCase(s) =

100 : noop

∃b. BIn(b,Paris, s)

But sometimes you need to

approximate…

Approximate FOMDP Solutions via LP

• (SanBout, UAI-05/06) FOALP / FOAPI: Generalize
approximate LP and policy iteration (PI) solutions
– First-order linear program:

Vars: wi; i [k

Minimize: f(wi)

Subject to: case1(w,s) mmmm case2(w,s) ; ∀s

state spacestate space

Constraint Generation for FO-LPs

• Example constraint:

0 m w1• ⊕ w2• ; ∀∀∀∀s

¬φ(s) ∧∧∧∧ ¬ϕ(s)

φ(s) ∧∧∧∧ ¬ϕ(s)

¬φ(s) ∧∧∧∧ ϕ(s)

φ(s) ∧∧∧∧ ϕ(s)

0 m 4w1 + 20w2

0 m 3w1 + 20w2

0 m 4w1 + 10w2

0 m 3w1 + 10w2

• Only finite distinct constraints… but still many

• Solve LP via constraint generation

– Efficiently find max violated constraints

– Generalize variable elimination to relation elimination!

¬ϕ(s)

ϕ(s)

20

10

¬φ(s)

φ(s)

4

3

Relation Elimination for Constraint Gen.

2 4 6 8 10 12 14

20

40

60

80

100

Problem Instance ID

P
e

rc
e

n
ta

g
e

 R
u

n
s
 S

o
lv

e
d

Percentage Runs Solved vs. Problem Instance

FOALP

sfDP

FPG

FF-Replan

2 4 6 8 10 12 14

10
2

10
4

Problem Instance ID

A
v
e

ra
g

e
 R

u
n

n
in

g
 T

im
e

 (
m

s
) Average Running Time (ms) vs. Problem Instance

FOALP

sfDP

FPG

FF-Replan

2 4 6 8 10 12 14

50

100

150

200

Problem Instance ID

A
v
e

ra
g

e
 #

 A
c
ti
o

n
s
 t
o

 G
o

a
l

Average # Actions to Goal vs. Problem Instance

FOALP

sfDP

FPG

FF-Replan

International Prob. Planning Comp.: FOALP 2nd

First-order MDPs

Scott Sanner

Related Work &

Remarks

Related Purely Deductive Approaches

• Value Iteration:
– ReBel algorithm

(Kersting, van Otterlo, De Raedt, ICML-04)

– FOVIA algorithm for fluent calculus
(Karabaev & Skvortsova, UAI-05)

– First-order decision diagrams (FODDs)
(Wang, Joshi, Khardon, IJCAI-07; JK, ICAPS-08; WJK, JAIR-08)

• Approximate Linear Programming (ALP)
– First-order ALP (FOALP)

(Sanner & Boutilier, UAI-05; SB, AIJ-08)

• Policy Iteration
– Approximate policy iteration (FOAPI)

(Sanner & Boutilier, UAI-06)

– Modified policy iteration with FODDs
(Wang, Joshi, & Khardon, UAI-07)

• Factored FOMDPs – FOMDP extension
– Factored SDP and Factored FOALP

(Sanner & Boutilier, ICAPS-07)

Computationally
attractive for

FOMDP subset

FOMDP subsumes all
previous representations;

But FOMDP not enough
for PPDDL, need at least

factored FOMDP

Introduces first-order LP,
AIJ article best reference

Elegant FO-DD theory

Related Inductive Appoaches

First-order inductive MDP approaches

– Relational RL work by Driessens, Dzeroski, De Raedt

– Numerous works by Yoon, Fern, and Givan

– UAI-04 paper by Gretton and Thiebaux

– Recent ICML-08 non-parametric policy gradient work
by Kersting and Driessens

– Requires simulating grounded MDPs

– No performance bounds for all ground MDPs

Induction vs. Analytical Derivation

• The average human has 1 testicle

• In an inductive setting, need to ensure you
have the right hypothesis space (and
inductive bias) for generalization

• Not an issue for SDP / FOMDPs

– Guaranteed to derive ε-optimal lifted policy

FOMDP Conclusions

FOMDPs are lifted MDP model

– Use case notation and regression

– Symbolic dynamic programming = lifted DP

– Exploit state & action abstraction for MDPs

– Exact or approximate bounds for all ground MDPs

Factored FOMDP

Scott Sanner

Motivating Example: SysAdmin MDP

• Have n computers C = {c1, …, cn} in a network

• State: each computer ci is either “up” or “down”

• Transition: computer is “up” proportional to its state
and # upstream connections that are “up”

• Action: manually reboot one computer

• Reward: +1 for every “up” computer

cc11

cc22

cc44

cc33

How to Solve SysAdmin?

• State-of-the-art
(factored) MDP
solutions can
scale only to
~140 computers

D
om

ai
n

S
iz

e
(#

 c
om

pu
te

rs
)

1

10

102

Classical Enumerated
State MDPs

104

105

106

Factored
First-order MDPs

103

Factored MDPs

• First-order MDPs
cannot represent
SysAdmin domain
independently

⇒ need factored
first-order MDP!

• Need language extension for ∑∑∑∑ aggregator:

Factored FOMDPs: Additive Reward

• SysAdmin reward scales with domain size:

¬¬¬¬ Run(c1,s)

Run(c1,s)
0

1

rCase(s) =

rCase(s) = Σc∈C

⊕ ⋅⋅⋅ ⊕
¬¬¬¬ Run(cn,s)

Run(cn,s)

0

1

• Beyond expressive power of current FOMDP

¬¬¬¬ Run(c,s)

Run(c,s)
0

1

– Semantics is just the expanded ⊕

Factored FOMDPs: Factored Transition

• Need a relational DBN

• Need a joint distribution over indefinite # objects

Action

Next state

Previous
Situation
Fluents

…

Conn(di,c)

Run(c,s)

Run(d1,s)

Run(dm,s)

U(x)=reboot(x)

Run(c,s’)

P(Run(c1,s’),…,Run(cn,s’) | reboot(x)) = ∏c∈C
.95x≠c ∧ Run(c)

x≠c ∧ ¬¬¬¬ Run(c)

x=c

.05

1

Factored FOMDP Solution

• A FOMDP with indefinite sums and products of
case statements
– More expressive formalism than FOPI / FOVE

because case statements can be quantified

• For FO-ALP for SysAdmin, introduced two new
elimination techniques for constraint generation
– Linear elimination

– Existential elimination

� log(n) computation of SysAdmin ALP solution

– See ICAPS-07 / my thesis for details

• Need to compute: max ∃x Σc [case (c, x)]

– where case(c, x) =

Existential Elimination

0 ≥max
s

∑

c

[
case1(c, s)⊕ ..⊕ casep(c, s)⊕ eCase(c, s)

]

• Introduce:

–

(x = c) ≡ ¬b(c) ∧ b(next(c))• Replace:

• Final constraint:

x = c 10
x �= c ∧ . . . 9
x �= c ∧ . . . 0

– b(c1), b(c2), b(c3), …, b(cn-1), b(cn)

– ⊥⊥⊥⊥ ⊥⊥⊥⊥ S S S S

∑

c

eCase(c, s) =
∑

c

b(c) ⊃ b(next(c)) : 0
b(c) ∧ ¬b(next(c)) : −∞

Linear Elimination
• Need to compute: r(n) = maxc2…cn Σi=1…n case(ci,ci+1)

– where case(ci,ci+1,s) =

– r(2) = max c2

ci ci+1

⊥ ⊥ 1
⊥ ⊤ -5
⊤ ⊥ -5
⊤ ⊤ 0

=– r(4) = max c2,c3,c4

=

• Computation of r(n) takes O(log(n)) !

+

+

c1 c5

⊥ ⊥ 4
⊥ ⊤ -2
⊤ ⊥ -2
⊤ ⊤ 0

c1 c2

⊥ ⊥ 1
⊥ ⊤ -5
⊤ ⊥ -5
⊤ ⊤ 0

c2 c3

⊥ ⊥ 1
⊥ ⊤ -5
⊤ ⊥ -5
⊤ ⊤ 0

c1 c3

⊥ ⊥ 2
⊥ ⊤ -4
⊤ ⊥ -4
⊤ ⊤ 0

c1 c3

⊥ ⊥ 2
⊥ ⊤ -4
⊤ ⊥ -4
⊤ ⊤ 0

c3 c5

⊥ ⊥ 2
⊥ ⊤ -4
⊤ ⊥ -4
⊤ ⊤ 0

c1 cnci… …

Other Factored FOMDPs: Logistics

• Boxes fall off trucks with probability .1

• Compact factored FOMDP case statements
require symbolic values
– One of original intentions of SDP

vCase(s) =

First-order POMDPs

Scott Sanner

A Proposal

Kristian Kersting

Building on previous work by Wang, Khardon and Schmolze

Goals of FO-POMDPs

• Advantages of FOMDP

– Exploit state & action abstraction for MDPs

– Exact or approximate bounds for all ground MDPs

• Additional advantage of FO-POMDP

– ∞∞∞∞ relational observation space

– Solution derives only the relevant observations

Why are FO-POMDPs better?

• One DP Backup in “flat” POMDPs:

O(|A||Γ||Z|)

• A large observation space |Z| will kill you

– Factored POMDPs attack this problem

– But cannot handle ∞ relational spaces

FO-POMDP Value and Belief State
Representation

V 1(s) =

∃b.BoxIn(b, paris, s) : 19.0
¬“ ∧ ∃b, t.TruckIn(t, paris, s) ∧ BoxOn(b, t, s) : 8.1
¬“ : 0.0

V 2(s) =

∃b.BoxIn(b, paris, s) : 26.1
¬“ ∧ ∃b, t.TruckIn(t, paris, s) ∧ BoxOn(b, t, s) : 15.4
¬“ ∧ ∃b, c, t.BoxOn(b, t, s) ∧ TruckIn(t, c, s) : 7.3
¬“ : 0.0

V 0(s) = R(s) =
∃b.BoxIn(b, paris, s) : 10
¬∃b.BoxIn(b, paris, s) : 0

p1

p2

p1

p2

p3

p1

p2

p3

p4

 •

 •

 •

Key Assumption

• Have disjoint state and observation relations

– State relations known, but hidden

– Observation relations fully observed

– Connection is stochastic observation actions:

• Break down into deterministic observation actions

• Probability distribution over actions

• Objects (terms) fully observed

– Object identity ambiguity handled by uncertainty on
term equality relation

Derive relevant
observations for
a state partition.

FO-POMDP Policy Tree

• Each α-vector corresponds to FO-strategy

– Observations at partition observation space

– Actions at are derived from observations

∃�x
φ1

(�x)

A i
(�x)

∃�x φ
k (�x)

A
j (�x)

…
…

…

α(s) =
ψ1(s) : 10
ψ2(s) : 0

p1

p2

 •

Summary

• FOMDPs

– Basic representation and SDP algorithm

– Caveats and workarounds

• Extensions

– Factored FOMDP

– FO-POMDP

– No Factored FO-POMDP yet ☺

Take-home Message

• Relational languages compactly capture many
sequential decision-making models
– Rewards

– Stochastic action theories

• If you have a model (or can learn it)
– Analytically derive domain-independent solutions (or

approximations thereof)

– Can inform relational RL

– Exchange techniques with (extensions of) FOPI / FOVE

