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Warning

 This talk is about:

Statistical Relational Im)@

Probabilistic Planning

{ SRL, ILP,
Human expert }
provide the model

 But wait, don't leave...

— QOverlap with and extensions of lifted inference
« FOPI/ FOVE

— In the end, we learn in order to make decisions!



Talk Summary

Relational models are natural for many
sequential decision-making problems

But most sequential planners ground the
relational model
— thus throwing away all relational structure

Potential gains with lifted relational solutions
— Interpretability
— time and space efficiency Focus of

=> scalability this talk




Talk Outline

 First-order MDPs (FOMDPs)

— “a first model” for first-order sequential decision theory
— basic ideas and highlights

« Caveats of FOMDPs and workarounds
— limitations and enhancements
— tricks-of-the-trade

 Extensions
— factored FOMDP
— first-order POMDP
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Relational Planning Languages

« Common languages:
— (P)STRIPS
— (P)PDDL
« more expressive than STRIPS
« for example, universal and conditional effects:

(raction put-all-blue-blocks-on-table
:parameters ()

: dition ()
effect (forall (?b) 1l

(when (Blue ?b)

(not (OnTable ?b)))))

— General Game Playing (GGP)

* Ohe or more agents



How to Solve?

« Relational planning problem:

/Par'is ““““““ :

Lon on Ber'll — Mow
@ Rome Nl

(raction load-box-on-truck-in-city
‘parameters (?b - box ?t - truck ?c — city)
:precondition (and (BIn ?b ?c) (TIn ?t ?c))
ceffect (and (On ?b ?t) (not (BIn ?b ’c))))

Logistics:

« Solve ground problem for each domain instance?
- 3 trucks: "9 W 2 planes: = = 3 boxes:m® ®

 Or solve lifted specification for all domains at once?



Case Statement

m (SA,T,R)for FOMDPs defined in terms of case
¢ €.9., reward case in Logistics FOMDP:

Tb. BoxIn(b, paris, s) 1
— 3b. BoxIn(b, paris, s) 0

Quantified Disjoint partitioning
formulae of world states

rCase(s) =




Case Operations

m Operators: Define unary & binary case operations
¢ E.g., can take “cross-sum” & (or ®, ©) of cases...

OAVY 13
o |10 YHE e

—¢ |20 ® -y 4% - Ay |23
ﬂ(‘) A —|\|I 24

a Inconsistent
partitions should

be removed for
Kcompactness/




First-order Regression Planning

[ Reiter’s Default Solution to Frame Problem ]

« Use regression to back-chain through actions

o 4b*,t*. BoxOn(b*,t*, s) A TruckIn(t*, paris, s)
.. v 3b. BoxIn(b, paris, s)

%) 7 3b. BoxIn(b, paris, 8)]

Goal State

 Use 3 to tell if valid action instantiation exists




First-order Regression Planning

 Define abstract
goal / reward, e.g.,

3b. BoxIn (b, paris, s)

« Can take expectation
over deterministic
outcomesfor T
- - 1-step-to-go
decision-theoretic 2-steps-to-go

regression 3-steps-to-go
n-steps-to-go




Symbolic Dynamic Programming

« What value if 0-stages-to-go?
— Obviously V(s) = rCase(s)

« What value if 1-stage-to-go?
— We know Q-value for each action (regress + 3 quantification)

Vi(s) =

max, <

/-

0,

0,

%

®,

= Q'(s, load(b,t) )

= Q'(s, unload(b,t) )
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Symbolic Dynamic Programming

« What value if 0-stages-to-go?
— Obviously V(s) = rCase(s)

« What value if 1-stage-to-go?
— We know Q-value for each action (regress + 3 quantification)

9
@ 9 le— | ¥ — = Q1(s, load(b,t) )
Vi (S ) | else @; 3 2
- else 1
- 0 b il Q1 load(b,t
else @, 0 ] — (51 unload(b, ))
4

« Value iteration: [Boutilier, Reiter, & Price, IJCAI-01]
— Obtain v+ from V* until (V**+l o V") < €



Ex: First Two Steps of SDP

3b. BoxIn(b, paris,s) : 10
—3b. BoxIn(b, paris,s) : 0

3b. BoxIn (b, paris, s) : 19.0
—“ A db, t. TruckIn(t, paris, s) A BoxOn(b,t,s) : 8.1
— 0.0
3b. BoxIn(b, paris, s) : 26.1
—“ A 3b, t. TruckIn(t, paris, s) N BoxOn(b,t,s) : 15.4
—“Adb,c,t.BoxOn(b,t,s) A TruckIn(t,c, s) 7.3

44
—

0.0




Correctness of SDP

[Boutilier, Reiter, & Price, IJCAI-01]
« Show SDP for FOMDPs is correct w.r.t. ground MDP:

First-order . FOMDP Value
(FO) MDP Function
Lifted FOMDP Solution |
|
(@) 1 ©
o 1 O
=
3 1 5
o | &
|
v v
Ground » Ground MDP
MDP Value Function

Ground MDP Solution



Where are we?

* Loosely defined the FOMDP

» Described how it is possible to find a lifted
solution independent of domain size

— Exploits state abstraction
— Exploits action abstraction (3)
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Caveats of First-order Planning |

« Many problems have topologies
— e.g, reachability constraints in logistics

e P
/Parls < ““““““ -

—

London \ Moscow

Berlm ~ .
=

» |f topology not fixed a priori...

— first-order solution must consider « topologies
* e.g., if Moscow reachable from Rome in five steps...

— In general case, leads to « values / policy

ﬁix your topolog@




Caveats of First-order Planning I

. v Rewards | identical goals lifted goal decomposition |

Vb, c. Dst(b,c) — BoxIn(b,c,s) : 1
- : 0

R(s) =

« Value function must distinguish « cases

Vb, c. Dst(b,c) — BoxIn(b,c,s): 1
One box not at destination : =
Vt(s) =|_Two boxes not at destination : v?

t — 1 boxes not at destination : ™!

« Policy will also likely be oo
— Some notable exceptions (put all blocks on table)



Caveats of First-order Planning lll

 Unreachable States

— (P)PDDL domains often under-constrained
« BlocksWorld: 2 blocks cannot be on a 3 block
» Logistics: 1 box cannot be in 2 cities at once

— But nowhere are these constraints encoded!

* |If no background theory to restrict legal states
— First-order planning must solve for all states
— Where most are illegal!

« But if initial states known...



First-order Real-time DP

« Simulate trials and do DP at every visited state
— We know Q-value for each action (regress + 3 quantification)

- 9

b — = Q'(s, load(b,t) )
T "
. 3
@5 = QI(s, unload(b,t) )
— | % !

 Lifted Symbolic DP at every step

« Ground evaluation to find partitions for current state
— no theorem proving for consistency checking!

« Restrict lifted value function to reachable states



Caveats of First-order Planning IV

 Value function may grow very large

b1 1000
¢2 . 10.0
Vi(s) = O3 . 2.5
®10000 : 1.1

* Need compact data structures and / or
approximations...



First-order ADDs

« Want to compactly represent:
Jdz.[A(x) VVy.A(x) AN B(x) AN =A(y)] |1

-7 0

case =

« Push down quantifiers, expose prop. structure:

v ( ax.A(x)AB@)A)

Var Var < FOL KB

aV (bA —a)

a |=[Fz.A(x)] case =
b |=[Jx.A(x) A B(x)]

7

 Convert to first-order ADD

.
““‘
o «



FO-ADDs are Compact!

 Lifted reward for Logistics
rCase(s) = ED BIn(b,_ Paris, s) |

|

10 O
« Lifted value function for Logistics

vCase(s) = |3b. BIn(b. Paris. s))

/

100 : noop (3p,¢.TIn(t, Paris, s) A On(b,t,5)]

/ !

89 : unload(b,t)Bb,t. On(b,t,s)]

.
.
.

|
80 : drive(t, PaTiSI b, c. BoxIn(b,c,s) A 3It.TIn(t,c, s)]

/ 3

72 : load(b,t) -




But sometimes you need to
approximate...



Approximate FOMDP Solutions via LP

« (SanBout, UAI-05/06) FOALP / FOAPI: Generalize
approximate LP and policy iteration (Pl) solutions
— First-order linear program:
Vars: w. i<k
Minimize:  f(w))
Subject to: case,(w,s) > case,(w,s) ; Vs

f ]

< state space >




Constraint Generation for FO-LPs

« Example constraint:

0(s) |3
—(s) | 4

0>we @ . Vs

 Only finite distinct constraints... but still many

O(s) A 023w, +
—0(s) A 0>4w, +
0(s) A 02> 3w, +
—10(s) A 0>4w, +

« Solve LP via constraint generation

— Efficiently find max violated constraints
— Generalize variable elimination to relation elimination!




Relation Elimination for Constraint Gen.

N
Vb, c. Dst(b,c) D BoxIn(b,c, s) (10 3b, c. Dst(b,c) AN ~BoxIn(b,c,s) : wi 3t, c. TruckIn(t, c, s)(wg
0 > max vsJ-

S ﬁ b
— ¢ -0 —¢ (—w1 ) —¢ 0
) =
w1 = 2and wy =1
< {=Dst(b,c) V BoxIn(b,c,s)} :10 {Dst(cs,cq), 7 BoxIn(cs, cq,s)} 2 {TruckIn(cs,ce,s)} : 1 >
0 > max ) S¥)
i {Dst(c1,c2),~BoxIn(ci,co,8)}: 0 {=Dst(b,c) V BoxIn(b,c,s)} :—2 {=TruckIn(t,c,s)} :0
b ~er5), Dst(c3, c4), =Boskatesrersy,Dst(c3,cq), 0 } 2 12
STUR e e 08 TruckIn(cs, cg,s)} i 1
O>max< { / ) ® t (c5. ¢, 5)} )
B {Dst(c1,c2), Dst(cs, ca), =Bowtnterserrsy, =Boxtn{eserst } D2 {=TruckIn(t,c,s)} : 0
{=DstlbeBoxlnlbe-s}, Dst(cy, o), =Bezlnteressy, ) } D=2

Truckin(cs,cg,s)} 1 1
OEmax( {}:8|D { (¢5, 6. )} )
§ {=TruckIn(t,c,s)} : 0

0>10+ —wqy + wo



International Prob. Planning Comp.: FOALP 2nd

Average Running Time (ms) Percentage Runs Solved

Average # Actions to Goal

Percentage Runs Solved vs. Problem Instance

100c0 P R ¥ 2 F & F = F S—— 7 ¥ 7
// )
80— /4
60 — |
—<— FOALP
40— | —+— sfDP -
FPG
201~ | & FF-Replan : .
| | | | | | v |
2 4 6 8 10 12 - 14
Problem Instance ID
Average Running Time (ms) vs. Problem Instance
\ \ \ pa
—©— FOALP
—+—sfDP
T FPG A i
10* - — FF-Replan |
102F%* = L?I = \ ‘ ‘ ‘ | —
2 4 6 8 10 12 14
Problem Instance ID
Average # Actions to Goal vs. Problem Instance
| \ \ \
200 — —©— FOALP |
—+—sfDP
A E!
150 | FPG o 7 |
—=— FF-Replan 4
100 s _
.

Problem Instance ID
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Related Purely Deductive Approaches

Computationally
attractive for

Value lteration:
— ReBel algorithm

(Kersting, van Otterlo, De Raedt, ICML-04) FOMDP subset
— FOVIA algorithm for fluent calculus
(Karabaev & Skvortsova, UAI-05) glegant FO-DD theory

— First-order decision diagrams (FODDs)
(Wang, Joshi, Khardon, IJCAI-07; JK, ICAPS-08; WJK, JAIR-08)

Approximate Linear Programming (ALP) Introduces first-order LP
— First-order ALP (FOALP) : ’
(Sanner & Boutilier, UAI-05; SB, AlJ-08) |__AlJ article best reference

Policy lteration
— A?roxmate policy iteration (FOAPI)

anner & Boutilier, UAI-06) \
— Modified policy iteration with FODDs FOMDP subsumes all
(Wang, Joshi, & Khardon, UAI-07) previous representations;

Factored FOMDPs — FOMDP extension But FOMDP not enough
— Factored SDP and Factored FOALP for PPDDL, need at least
(Sanner & Boutilier, ICAPS-07) factored FOMDP /




Related Inductive Appoaches

First-order inductive MDP approaches

— Relational RL work by Driessens, Dzeroski, De Raedt
— Numerous works by Yoon, Fern, and Givan

— UAI-04 paper by Gretton and Thiebaux

— Recent ICML-08 non-parametric policy gradient work
by Kersting and Driessens

— Requires simulating grounded MDPs
— No performance bounds for all ground MDPs



Induction vs. Analytical Derivation

* The average human has 1 testicle

 |n an inductive setting, need to ensure you
have the right hypothesis space (and
iInductive bias) for generalization

* Not an issue for SDP / FOMDPs
— Guaranteed to derive ¢-optimal lifted policy



FOMDP Conclusions

FOMDPs are lifted MDP model

— Use case notation and regression
— Symbolic dynamic programming = lifted DP

— Exploit state & action abstraction for MDPs
— Exact or approximate bounds for all ground MDPs
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Motivating Example: SysAdmin MDP

« Have n computers C = {c,, .., ¢,} In a network
- State: each computer c, is either “up” or “down”

- Transition: computer is “up” proportional to its state
and # upstream connections that are “up”

C
1
S

- Action: manually reboot one computer
- Reward: +1 for every “up” computer




Domain Size (# computers)

4 106

105

104

103

102

10

How to Solve SysAdmin?

Factored
First-order MDPs

Factored MDPs

Classical Enumerated
State MDPs

 First-order MDPs
cannot represent
SysAdmin domain
iIndependently

— need factored
first-order MDP!

« State-of-the-art
(factored) MDP
solutions can
scale only to
~140 computers



Factored FOMDPs: Additive Reward

« SysAdmin reward scales with domain size:

Run(c,,s) @@ Run(c,.s) 1

rCase(s) =
(s) - Run(c,,s) |O© = Run(c,,s) |9

« Beyond expressive power of current FOMDP

* Need language extension for > aggregator:

Run(c,s) 1
— RUH(C,S) 0

rCase(s) = X

— Semantics is just the expanded &



Factored FOMDPs: Factored Transition

* Need a relational DBN

@z reboot(x)

Conn(d.,c)

* Need a joint distribution over indefinite # objects

X=C 1

P(Run(c,,s),..,Run(c,s) | reboot(x)) = | I - |>#c A Run(c) 95

ceC

x#c A =1 Run(c) .05




Factored FOMDP Solution

A FOMDP with indefinite sums and products of
case statements

— More expressive formalism than FOPI / FOVE
because case statements can be quantified

* For FO-ALP for SysAdmin, introduced two new
elimination techniques for constraint generation

— Linear elimination
— Existential elimination
=> log(n) computation of SysAdmin ALP solution

— See ICAPS-07 / my thesis for details



Existential Elimination

Need to compute: max Ix X_[case (¢, x)]

T =c 10
— where case(c, x) = xAcN...| 9
xFCN... 0
Introduce:
) B b(c) D b(next(c)) : 0
; eCase(c, s) = b(c) A =b(next(c)) : —

- b(cy), b(c,), b(c3), ..., b(c, ), b(c,)
Replace: (z =c) = —b(c) A b(next(c))
Final constraint:
0> maxz caseq(c, 8) @ .. @ casep(c, s) @ eCase(c, s)]

C



Linear Elimination &— - ©® - —®

* Need to compute: r(n) = max,, ., £.; , case(c;c.,)

C; Ci4+1
— where case(c,,c,;,8)= = - |1
L] T ]-5
T L [-5
T T [0
c1 | ¢ C2 | €3 @ | €3
1Tl 111 Ll L1 L]L] 2
- r@@)=maxc, [L[T[5|+[L[T[5]|=[L][T ][4
T L]-5 T L]-5 L]+
T T[]0 T T[]0 T T]0
Cq C3 C3 Cs C1 5
I L]L]2 LjL]4d
- r(4) = max c,,c5¢y L4+ | LT 4= L] T]-2
T L |-4 T| L |4 T L]-2
T|T]O0 T|T]O0 T1Treo

« Computation of r(n) takes O(log(n)) !



Other Factored FOMDPs: Logistics

« Boxes fall off trucks with probability .1

vCase(s) =

/~ N\

3b. BoxIn(b, paris, s)

/ 10

—

“AA{Tb. [(t =t N BoxOn(b, 1",

s) A TruckIn(t*, paris, s))

!

V(3t. BoxOn(b,t, s) A TruckIn(t, paris, s)) V TruckIn(t, paris, s)|} 10 —p
—“ATb. [t =t A BoxOn(b,t*, s) N TruckIn(t*, paris, s)] 9
—“Adb. [3t. BoxOn(b,t,s) AN TruckIn(t, paris, s)] 10 — 10p

-1

44

\ 0/

N

D = () 9|{<biatj>|bi63033/\bi#b*. BoxOn(b; t;,s)A\TruckIn(t;,paris,s)}|

- Compact factored FOMDP case statements
require symbolic values

— One of original intentions of SDP
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Goals of FO-POMDPs

« Advantages of FOMDP

— Exploit state & action abstraction for MDPs
— Exact or approximate bounds for all ground MDPs

 Additional advantage of FO-POMDP

— oo relational observation space
— Solution derives only the relevant observations



Why are FO-POMDPs better?

* One DP Backup in “flat” POMDPs:
O(|A[|T[#)

» A large observation space |Z| will kill you
— Factored POMDPs attack this problem
— But cannot handle « relational spaces



: ' 1
VO(s) = R(s) — 3b. BoxIn(b, paris, s) 0 [ P }

FO-POMDP Value and Belief State

Representation

—3b. BoxIn (b, paris,s) : 0 D5

P1

*l P2

3b. BoxIn (b, paris, s) : 19.0
—“ A db, t. TruckIn(t, paris, s) A BoxOn(b,t,s) : 8.1
— ¢ . 0.0
3b. BoxIn (b, paris, s) : 26.1

—“ A 3b, t. TruckIn(t, paris, s) A BoxOn(b,t,s) : 15.4

P2

—“Adb,c,t.BoxOn(b,t,s) N\ TruckIn(t,c,s) : 7.3

— ¢ . OO

\p3/

P1

P3

P4



Key Assumption

* Have disjoint state and observation relations
— State relations known, but hidden
— Observation relations fully observed

— Connection is stochastic observation actions:
 Break down into deterministic observation actions
- Probability distribution over actions Derive relevant

observations for
a state partition.

» Obijects (terms) fully observed

— Obiject identity ambiguity handled by uncertainty on
term equality relation



FO-POMDP Policy Tree

» Each a-vector corresponds to FO-strategy

— Observations at O partition observation space
— Actions at O are derived from observations




Summary

« FOMDPs

— Basic representation and SDP algorithm
— Caveats and workarounds

» Extensions
— Factored FOMDP
— FO-POMDP
— No Factored FO-POMDP yet ©



Take-home Message

» Relational languages compactly capture many
sequential decision-making models

— Rewards
— Stochastic action theories

* If you have a model (or can learn it)

— Analytically derive domain-independent solutions (or
approximations thereof)

— Can inform relational RL
— Exchange techniques with (extensions of) FOPI / FOVE



