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Objectives and methodology

m To design goal-directed agents that learn to discover
risk-averse strategies in a non-stationary environment
with high levels of uncertainty.

m Reinforcement learning: learn through trial and error
exploration with only limited feedback.

m Direct Reinforcement (DR), or policy gradient methods
enable an agent to discover useful strategies without the
need to learn a value function.

m Apply the methods developed to an economically
important problem: dynamic portfolio management.
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Dynamic portfolio management

m Allocate an 1nitial budget among different risky assets.
m The evolution of the asset prices 1s uncertain.

m Difficult to forecast (efficient market hypothesis)

m Non-stationary.

m Multi-period investment problem: The portfolio can be
rebalanced by trading assets at fixed, regularly spaced,
times, according to a management strategy.

m Assets can be bought and sold 1n arbitrary quantities at
the posted price (no market impact).

m There are transaction costs [0.5 - 2 %].

GOAL: Design good self-financing strategies.

Dynamic portfolio management



Experiments

m Data: Monthly Gross index (total returns without taxes in US §)
December 31, 1969 - may 29, 2009 [474 months]

m Source: MSCI http:// www.msci.com/

m Europe: Austria, Belgium, Denmark, Finland, France,
Germany, Greece, Ireland, Italy, Netherlands, Norway,
Portugal, Spain, Sweden, Switzerland, United Kingdom

m North America: Canada, USA

m Pacific: Australia, Hong kong, Japan, New Zealand,
Singapore

m The world index: Europe + North America + Pacific
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Time series of asset prices
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E.g. MSCI Gross index (total returns without taxes in US §)
from December 31, 1969 to May 29, 2009, AT = 1 month
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Time series of returns
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Time-series for returns are

=12,....,m

n=12,.... N

m Quasi-stationary
m Short-time memory

m Heteroskedastic
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Initial portfolio

m Assume we have an 1nitial capital P, .

m Allocate this capital among the m assets:

Portfolio composition :
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Passive management: Market capitalization

m The composition of the portfolio is held constant [t,, t\]

Portfolio wvalue:
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Active management (no transaction costs)

m The composition of the portfolio is held constantin [t _,,t )
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Portfolio value (without transaction costs)

m Value of the portfolio at 7,
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Portfolio value (with transaction costs)
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Recurrent RL architecture
(without transaction costs)
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Recurrent RL architecture
(with transaction costs)

Reo!

Softmax network

Expert
recommendation

O
O ~

Reference portfolio

r Market n-l 1
L capitalization ]( S

Dynamic portfolio management 13



RRL architecture (without transaction costs)

m Use a softmax representation for the portfolio weights
m [nputs:
* Non-recurrent: Constant bias term (1) + exogenous variables: I,

« Recurrent (delay 1): Delayed values of the portfolio weights updated
by market capitalization

m Qutputs: Portfolio weights

W@ = [95") 0 ﬁ(i)J
fn(i)(F I .W(i)): Héi) +0"¥ [[n +§(i) [Fn; i=12,...,m.
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RRL architecture (with transaction costs)

m Use regularization hyperparameter 0 <A <1

F,=AF +(1-2)F"

K =current portfolio weights

n

F'*) =softmax [fn (F’n,ln;w)]

A=1 Buy and hold strategy
A =0  Use the recommendation of the softmax network
1gnoring the composition of the current portfolio
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Measures of performance: Portfolio value

m [ earning parameter O
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Measures of risk

m Measures of risk: stdev, Semideviation, VaR, ShortFall
(conditional VaR), etc.
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Balancing risk and performance: Sharpe ratio

m The Sharpe ratio is a risk-adjusted measure of performance.

oo El]
Stdev[?n ]

m For online optimization it 1s preferable to use the differential
Sharpe-ratio
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Exponential moving average Sharpe ratio
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Differential Sharpe ratio
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Maximizing the Differential Sharpe ratio
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Learning protocol

m Input indicators
Delayed moving averages for [3 6 12 24] months
m Training / testing for RRL

{1} Learn weights in window: [t -t; ..., t,-1];
{2} Test on single point: t,

m Optimize either the portfolio value or the differential Sharpe ratio.

m Fix the values of the differential Sharpe-ratio parameter I, of the learning
parameter p and of the regularization parameter A by cross-validation.

m [earn the policy using t; ... = 120 months (10 years).

m Use 2/3 of the data (training set = 80 points) for weight optimization and
1/3 of the data (validation set = 40 points) for early stopping.

m Average the output of 10 networks trained on different random partitions
of the data available for learning into training and validation sets.
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Results (without costs)
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Results (with costs)

Performance on the

last 220 months
Profit
RRL: 3.2120

Markowitz : 2.7349
Market: 3.0001

Sharpe ratio
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Conclusions (I)

m  Without transaction costs

m [t 1s possible to discover active management strategies that outperform the
market.

m Most of these strategies exhibit switching behavior, which is undesirable
from the point of view of robustness and stability.

m The frequent and large transfers of capital among assets makes it difficult to
implement the investment policy.

m  With transaction costs
m [t 1s more difficult to design strategies that beat the market portfolio
m [t 1s important to use a combined strategy that uses
* A pool of learned strategies (recurrent reinforcement learning)
* A reference strategy with a sufficiently good performance
We have used passive management as a reference.
Can other strategies be used (e.g. log-optimal, based on forecasts, etc.)?
 Investment policies are smooth (easier to manage) & more diversified
m  More domain-specific information is needed to design successful strategies!
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Conclusions (1I)

m Recurrent Reinforcement Learning (RRL) provides a computationally
efficient solution to the problem of dynamic financial asset allocation

m RRL is an adaptive policy search algorithm that can learn a strategy
on-line in a non-stationary environment that is uncertain and/or risky.

m [t is not based on forecasts and does not require learning a value function.
m Optimization of risk-adjusted measures of performance (e.g. Sharpe ratio).
m Takes into account transaction costs.

m The investment strategies discovered by the Direct Reinforcement Agent are
m Interpretable and robust.
m Well-diversified.
m Avoid switching-behavior.

m The methods developed can be employed in other areas of application
characterized by large uncertainty and a changing environment, in which a
risk-averse behavior is desirable: design of policies (e.g. energy), robotics,
autonomous vehicles, industrial control, telecommunications, etc.
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