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e Problem: Bipartite ranking

@ Assume: we have designed a scoring rule for ranking new data
@ Issue: Performance assessment

@ Choice of a performance measure: Precision and Recall
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@ Some work on estimation of the ROC curve:

[Hsieh and Turnbull, AOS 1996]

[Macskassy and Provost, ECAI 2004], and
[M., P., and Rosset, ICML 2005]

[Bertail, Clémencon, and Vayatis, NIPS 2008]
[Horvath, Horvath, and Zhou, JSPI 2008]
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Previous work

@ Some work on estimation of the ROC curve:

[Hsieh and Turnbull, AOS 1996]

[Macskassy and Provost, ECAI 2004], and
[M., P., and Rosset, ICML 2005]

[Bertail, Clémencon, and Vayatis, NIPS 2008]
[Horvath, Horvath, and Zhou, JSPI 2008]

@ None on PR curves!



e Visual display of performance at various levels

@ Justification: the optimal curve is above all the others
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@ Justification: the optimal curve is above all the others
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Motivations for using Precision-Recall

Visual display of performance at various levels
@ Justification: the optimal curve is above all the others
@ ROC vs. Precision-Recall?

@ ROC curves are independent of p =P{Y = +1}

PR curves best for highly skewed distributions (p small)
( see Davis & Goadrich, ICML 2006 )



Probabilistic model

(Z,Y) random pair with unknown distribution P

Z € R pointwise score evaluation

Y € {—1,+1} binary label/class
@ Conditional distributions:

Fi(z)=P{Z<z|Y=+41} and F_ (z)=P{Z2<z|Y=-1}

Proportion: p =P{Y = +1}

Marginal distribution of Z:

F=pF.+(1-p)F-



@ Precision: P{Z >t | Y = +1}
@ Recall: P{Y =+1|Z >t}
@ Definition of the PR curve:

PR :teR—(P{Z>t|Y =41}, P{Y=41|Z>1t}),
or

PR : teR— <1—F+(t), p<1_F+(t)

Tr0))
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Properties of the PR curve

e lIdentical populations. If F;. = F_ then PR(t) = (1 — F(t), p)
o Limits.

> lim_PR(t) = (1,p)
| (o ~ i

o Monotonicity.

PR curve is decreasing if likelihood ratio dFy /dF_ is monotone.



o Conditional quantile function:

x €[0,1] — (F4)"(1 - x)
o False positive rate at level x:

alx)=1-F_o(Fy) Y (1-x)
@ PR curve as the plot of PR function:

PR : x€[0,1] — Px

px+ (1= pla(x)
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e Data: (Z1,Y1),...,(Zn, Yn) iid.

@ Number of positives:

n
ny = {Yi=+1}
i=1
@ Empirical false positive rate at x:

a(x)=1-F_o(Fy) (1 =x)
@ Empirical PR function:

PR(x) = fasal

nyx+ (n—ny)a(x)
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o Set PR to be the empirical PR function based on i.i.d. data
@ Normalized PR fluctuation process:

Ra(x) = v (PR(x) = PR(x))

@ Set € > 0 and consider x € [¢,1 — ¢]
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e Conditional distributions F; and F_ are equivalent and continuous
@ Forall x € (¢,1 —¢):

FL(FZ1()) >0
e Tangent of x — «(x) is bounded, i.e.

F’ F—l
/_O tl(X) <
x€[e,1—¢€] F_|_ o F_|_ (X)
@ There exists v > 0 such that:

sup - log(F} o F71(x)) < v <oo.
x€(e,1—¢) X
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Strong approximation result

Theorem 1
Under the previous assumptions, we have, almost surely, as n — oo:

(i) sup [PR(x)—PR(x)| -0,

x€E[e,1—¢]

(ii) uniformly over [e,1 — €]: Ra(x) = Z{(x) + 0 <L(\%7)> 7

where

{Z(MY is a sequence of random processes with gaussian marginals and
involves F, F_ and their derivatives

L(n,7) = (loglog n)?1™ (log n)”")

p1(7) =0, p(7)=1, ify<1
and p1(7) =0, p2(7) =2, ify=1
pi() =7 p(y)=7v-1+¢6¢>0, ify>1




Expression of the strong approximation

@ Set {B{")} and {Bé")} two independent sequences of brownian
bridges on [0, 1]

@ Set W a gaussian r.v. independent from {Bfn)}, {Bé")}

e Formula for Z(M:

7 (x) = PR()° (a(x) ( 1o p) W+

X

L—p (FLoFT (X)) fm) VI—p\ L)
P32 (,_-/+ - ,_—11(X)> Br(x) + <> B (a(X))>

p

for some W, {B{")} and {Bg")}.



@ Want: Confidence bands on the true PR

@ Got: explicit gaussian limit distribution for R,...
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@ Want: Confidence bands on the true PR
@ Got: explicit gaussian limit distribution for R,,..

@ ... but they depend on the unknown distribution!
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Is this helpful?

@ Want: Confidence bands on the true PR

Got: explicit gaussian limit distribution for R,...

@ ... but they depend on the unknown distribution!

Idea: Use bootstrap

Drawback: Naive bootstrap for quantile estimation has a very slow
rate of convergence



@ Set PR* = empirical PR curve obtained on a bootstrap sample
@ Bootstrapped PR fluctuation process:

Ry = {Va(PR’(x) - PR(x)) }

x€[e,1—¢€]
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@ Resampling from smoothed distributions: I?+/_ — F+/_
— use kernel smoothing

— e.g. gaussian kernel with bandwidth h = h,
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Repairing naive bootstrap

@ Resampling from smoothed distributions: IA-_+/_ — ,f—+/_

— use kernel smoothing

— e.g. gaussian kernel with bandwidth h = h,

@ Practical procedure:

» Draw with replacement (Z7, Y{*),...,(Z}, Y,) from
(Zlv Y1)7 ey (va Yn)

» Add an independent gaussian perturbation ¢; ~ N(0, h?) to each Z;:
x _ 7/ )
Zi =Zj+¢

» Get bootstrap n-sample: (Z;, Y{),...,(Z}, Y7)



Importance bootstrap confidence bands

Importance sampling: use mixture parameter p ~ 1/2

— use the importance function correction in the estimation

@ Importance function:

s -t \"T™
=\ \a(t—p)

Notations: E*[.] expected value over bootstrap n-sample distribution

Find r(d) such that:

E* |7v,-Iq sup |Ry(x)|<r(d)p| =1-06
x€[e,1—¢]



have as n — oo:

Same assumptions as before. Take also: h, ~ (nlog3 n)~/>. Then, we

sup |Hn,e(r) = HE2(r)| = op
reRy

().
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@ Promote statistical approach to machine learning concepts

@ Statistical theory may be helpful

@ PR curve learning still at an early stage!
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Last but not least - PR estimation and beyond!

@ Promote statistical approach to machine learning concepts

Statistical theory may be helpful

PR curve learning still at an early stage!

Statistical theory for ROC curve learning - check our papers!

» COLT'05, ALT'08, NIPS'08 (x 3), AISTAT'09
» JMLR 2007, AOS 2008, IEEE IT (to app.)
» ... and more to come!

R package for ROC curve learning soon available!



