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Context

Problem: Bipartite ranking

Assume: we have designed a scoring rule for ranking new data

Issue: Performance assessment

Choice of a performance measure: Precision and Recall



Variability of a ranking performance measure



Confidence bands for Precision-Recall curves?



Previous work

Some work on estimation of the ROC curve:

I [Hsieh and Turnbull, AOS 1996]
I [Macskassy and Provost, ECAI 2004], and

[M., P., and Rosset, ICML 2005]
I [Bertail, Clémençon, and Vayatis, NIPS 2008]
I [Horvath, Horvath, and Zhou, JSPI 2008]

None on PR curves!
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Motivations for using Precision-Recall

Visual display of performance at various levels

Justification: the optimal curve is above all the others

ROC vs. Precision-Recall?

ROC curves are independent of p = P{Y = +1}

PR curves best for highly skewed distributions (p small)

( see Davis & Goadrich, ICML 2006 )
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Probabilistic model

(Z ,Y ) random pair with unknown distribution P

Z ∈ R pointwise score evaluation

Y ∈ {−1,+1} binary label/class

Conditional distributions:

F+(z) = P{Z ≤ z | Y = +1} and F−(z) = P{Z ≤ z | Y = −1}

Proportion: p = P{Y = +1}

Marginal distribution of Z :

F = pF+ + (1− p)F−



True Precision-Recall curve

Precision: P{Z ≥ t | Y = +1}

Recall: P{Y = +1 | Z ≥ t}

Definition of the PR curve:

PR : t ∈ R 7→ (P{Z ≥ t | Y = +1}, P{Y = +1 | Z ≥ t}) ,

or

PR : t ∈ R 7→
(

1− F+(t), p

(
1− F+(t)

1− F (t)

))
.



Properties of the PR curve

Identical populations. If F+ = F− then PR(t) = (1− F+(t), p)

Limits.

I lim
t→−∞

PR(t) = (1, p)

I lim
t→+∞

PR(t) =

(
0,

p`

p`+ 1− p

)
, where ` = lim

t→+∞

dF+

dF−
(t)

Monotonicity.

PR curve is decreasing if likelihood ratio dF+/dF− is monotone.



Reparameterization of the PR curve

Conditional quantile function:

x ∈ [0, 1] 7→ (F+)−1(1− x)

False positive rate at level x :

α(x) = 1− F− ◦ (F+)−1(1− x)

PR curve as the plot of PR function:

PR : x ∈ [0, 1] 7→ px

px + (1− p)α(x)
.



Empirical PR function

Data: (Z1,Y1), . . . , (Zn,Yn) i.i.d.

Number of positives:

n+ =
n∑

i=1

I{Yi = +1}

Empirical false positive rate at x :

α̂(x) = 1− F̂− ◦ (F̂+)−1(1− x)

Empirical PR function:

P̂R(x) =
n+x

n+x + (n − n+)α̂(x)
.



The PR fluctuation process

Set P̂R to be the empirical PR function based on i.i.d. data

Normalized PR fluctuation process:

Rn(x) =
√

n
(
P̂R(x)− PR(x)

)

Set ε > 0 and consider x ∈ [ε, 1− ε]



Technical assumptions

Conditional distributions F+ and F− are equivalent and continuous

For all x ∈ (ε, 1− ε):
F ′+(F−1

+ (x)) > 0

Tangent of x 7→ α(x) is bounded, i.e.

sup
x∈[ε,1−ε]

F ′− ◦ F−1
+ (x)

F ′+ ◦ F−1
+ (x)

<∞

There exists γ > 0 such that:

sup
x∈(ε,1−ε)

d

dx
log(F ′+ ◦ F−1

+ (x)) ≤ γ <∞ .



Strong approximation result

Theorem 1

Under the previous assumptions, we have, almost surely, as n→∞:

(i) sup
x∈[ε,1−ε]

|P̂R(x)− PR(x)| → 0 ,

(ii) uniformly over [ε, 1− ε]: Rn(x) = Z (n)(x) + o

(
L(n, γ)√

n

)
,

where

I {Z (n)} is a sequence of random processes with gaussian marginals and
involves F+, F− and their derivatives

I L(n, γ) = (log log n)ρ1(γ) (log n)ρ2(γ)

and

 ρ1(γ) = 0, ρ2(γ) = 1, if γ < 1
ρ1(γ) = 0, ρ2(γ) = 2, if γ = 1
ρ1(γ) = γ, ρ2(γ) = γ − 1 + ε, ε > 0, if γ > 1.



Expression of the strong approximation

Set {B(n)
1 } and {B(n)

2 } two independent sequences of brownian
bridges on [0, 1]

Set W a gaussian r.v. independent from {B(n)
1 }, {B

(n)
2 }

Formula for Z (n):

Z (n)(x) =
PR(x)2

x

(
α(x)

(√
1− p

p3

)
W +

1− p

p3/2

(
F ′− ◦ F−1

+ (x)

F ′+ ◦ F−1
+ (x)

)
B

(n)
1 (x) +

(√
1− p

p

)
B

(n)
2 (α(x))

)

for some W , {B(n)
1 } and {B(n)

2 }.



Is this helpful?

Want: Confidence bands on the true PR

Got: explicit gaussian limit distribution for Rn...

... but they depend on the unknown distribution!

Idea: Use bootstrap

Drawback: Naive bootstrap for quantile estimation has a very slow
rate of convergence
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Bootstrap notations

Set PR∗ = empirical PR curve obtained on a bootstrap sample

Bootstrapped PR fluctuation process:

R∗n =
{√

n(PR∗(x)− P̂R(x))
}

x∈[ε,1−ε]



Repairing naive bootstrap

Resampling from smoothed distributions: F̂+/− → F̃+/−

→ use kernel smoothing

→ e.g. gaussian kernel with bandwidth h = hn

Practical procedure:

I Draw with replacement (Z ′1,Y
∗
1 ), . . . , (Z ′n,Y

∗
n ) from

(Z1,Y1), . . . , (Zn,Yn)

I Add an independent gaussian perturbation εj ∼ N (0, h2) to each Z ′j :

Z∗j = Z ′j + εj

I Get bootstrap n-sample: (Z∗1 ,Y
∗
1 ), . . . , (Z∗n ,Y

∗
n )
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Importance bootstrap confidence bands

Importance sampling: use mixture parameter p̃ ' 1/2

→ use the importance function correction in the estimation

Importance function:

γn =

(
n∗+
np̃

)n∗+
(

n − n∗+
n(1− p̃)

)n−n∗+

Notations: E∗[.] expected value over bootstrap n-sample distribution

Find r(δ) such that:

E∗
[
γn · I

{
sup

x∈[ε,1−ε]
|R∗n(x)| ≤ r(δ)

}]
= 1− δ



Bootstrap validity

Set:

Hn,ε(r) = P

{
sup

x∈[ε,1−ε]
|Rn(x)| ≤ r

}

Hboot
n,ε (r) = E∗

[
γn · I

{
sup

x∈[ε,1−ε]
|R∗n(x)| ≤ r

}]

Theorem 2

Same assumptions as before. Take also: hn ' (n log3 n)−1/5. Then, we
have as n→∞:

sup
r∈R+

|Hn,ε(r)− Hboot
n,ε (r)| = oP

(
n−2/5

)
.



Last but not least - PR estimation and beyond!

Promote statistical approach to machine learning concepts

Statistical theory may be helpful

PR curve learning still at an early stage!

Statistical theory for ROC curve learning - check our papers!

I COLT’05, ALT’08, NIPS’08 (x 3), AISTAT’09
I JMLR 2007, AOS 2008, IEEE IT (to app.)
I ... and more to come!

R package for ROC curve learning soon available!
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