Surrogate Regret Bounds for Proper Losses

Mark D. Reid
Robert C. Williamson

The Australian National University
The Australian National University & NICTA

Wednesday, 17 June

ICML 2009
Overview

Introduction
Aims
Losses, Links and Bayes Risks
Key Concepts: Fisher Consistency & Taylor’s Theorem

Representations
Savage’s Theorem
Bregman Divergence
Weighted Integrals

Results
Surrogate Regret Bounds
Convex Composite Losses

Conclusions
Introduction
Aims

To better understand loss functions through:

▶ **Translation**: Make work on risk from other fields ML-friendly
▶ **Unification**: Find key concepts underpinning existing results
▶ **Generalisation**: Propose generalisation of existing results

This approach led to:

▶ Simpler proofs of some existing results
▶ A new type of surrogate regret bound:
 ▶ Symmetric and non-symmetric surrogate losses
 ▶ Bounds on cost-weighted misclassification loss (of which 0-1 loss is a special case)
Aims

To better understand loss functions through:

- **Translation**: Make work on risk from other fields ML-friendly
- **Unification**: Find key concepts underpinning existing results
- **Generalisation**: Propose generalisation of existing results

This approach led to:

- Simpler proofs of some existing results
- A new type of surrogate regret bound:
 - Symmetric and *non-symmetric* surrogate losses
 - Bounds on *cost-weighted misclassification* loss (of which 0-1 loss is a special case)
Key Concepts

Two elementary concepts underpin all the results in this talk:

Fisher Consistency

A loss is Fisher consistent for probability estimation if its point-wise risk is minimised by the true point-wise probability.

Taylor’s Theorem - Integral Form

Given a function $f : [x_0, x] \rightarrow \mathbb{R}$ then

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \int_{x_0}^{x} f'(t)(x - t) \, dt$$
What is a loss?

A *loss* ℓ assigns a *penalty* $\ell(y, h)$ to a *prediction* $h \in \mathbb{R}$ relative to a *label* y.
What is a loss?

A loss ℓ assigns a penalty $\ell(y, h)$ to a prediction $h \in \mathbb{R}$ relative to a label y.

Traditionally, losses in machine learning are margin losses:

$$\ell(y, h) = \phi(yh)$$

where $y \in \{-1, 1\}$ and $\phi : \mathbb{R} \rightarrow \mathbb{R}$.

These are necessarily symmetric in that

$$\ell(-1, h) = \ell(1, -h).$$
We study a general class of composite losses:

\[\ell^\psi(y, h) = \ell(y, \psi^{-1}(h)) \]

where \(\psi : [0, 1] \to \mathbb{R} \) is an invertible link function that allows predictions \(h \in \mathbb{R} \) to be interpreted as probability estimates

\[\hat{\eta} = \psi^{-1}(h). \]
We study a general class of composite losses:

\[\ell^\psi(y, h) = \ell(y, \psi^{-1}(h)) \]

where \(\psi : [0, 1] \to \mathbb{R} \) is an invertible link function that allows predictions \(h \in \mathbb{R} \) to be interpreted as probability estimates

\[\hat{\eta} = \psi^{-1}(h). \]

We focus on the loss for probability estimation rather than the link.

Loss

A loss is a function \(\ell : \{0, 1\} \times [0, 1] \to \mathbb{R} \) such that

\[\ell(0, 0) = \ell(1, 1) = 0 \]

which assigns a penalty \(\ell(y, \hat{\eta}) \) for predicting that the probability that \(y = 1 \) is \(\hat{\eta} \in [0, 1] \) when the true label is \(y \).
Aim is to find an estimator $\hat{\eta} : \mathcal{X} \rightarrow [0, 1]$ that minimises the risk w.r.t. some unknown distribution \mathbb{P}

$$
\mathbb{L}(Y, \hat{\eta}(X)) = \mathbb{E}_{(X,Y) \sim \mathbb{P}}[\ell(Y, h(X))]
$$

$$
= \mathbb{E}_X[\mathbb{E}_{Y \sim \eta(X)}[\ell(Y, \hat{\eta}(X))]]
$$
Aim is to find an estimator $\hat{\eta} : \mathcal{X} \rightarrow [0, 1]$ that minimises the risk w.r.t. some unknown distribution \mathbb{P}

$$L(\eta, \hat{\eta}) = \mathbb{E}_{(X, Y) \sim \mathbb{P}}[\ell(\eta, X, Y, h(X))]$$

Point-wise Risk

The point-wise risk of ℓ under $Y \sim \eta$ is

$$L(\eta, \hat{\eta}) = \mathbb{E}_{Y \sim \eta}[\ell(\eta, \hat{\eta})]$$
Aim is to find an estimator $\hat{\eta} : X \rightarrow [0, 1]$ that minimises the risk w.r.t. some unknown distribution \mathbb{P}

$$
\mathbb{L}(Y, \hat{\eta}(X)) = \mathbb{E}_{(X, Y) \sim \mathbb{P}}[\ell(Y, h(X))] \\
= \mathbb{E}_X[\mathbb{E}_{Y \sim \eta(X)}[\ell(Y, \hat{\eta}(X))]]
$$

Point-wise Risk

The point-wise risk of ℓ under $Y \sim \eta$ is

$$
L(\eta, \hat{\eta}) = \mathbb{E}_{Y \sim \eta}[\ell(Y, \hat{\eta})]
$$

Point-wise Bayes Risk

The point-wise Bayes risk is the minimal point-wise risk

$$
\underline{L}(\eta) = \inf_{\hat{\eta} \in \mathbb{R}} L(\eta, \hat{\eta})
$$
A loss $\ell(y, \hat{\eta})$ is **Fisher consistent** if

$$L(\eta, \hat{\eta}) = L(\eta) = \inf_{\hat{\eta} \in [0,1]} L(\eta, \hat{\eta})$$

Fisher Consistency
Key Concepts: Fisher Consistency

Fisher Consistency
A loss \(\ell(y, \hat{\eta}) \) is **Fisher consistent** if

\[
L(\eta, \hat{\eta}) = L(\eta) = \inf_{\hat{\eta} \in [0,1]} L(\eta, \hat{\eta})
\]

Proper Loss
A loss is said to be **proper** if it is Fisher consistent.
Key Concepts: Fisher Consistency

Fisher Consistency
A loss $\ell(y, \hat{y})$ is **Fisher consistent** if

$$L(\eta, \hat{\eta}) = \underline{L}(\eta) = \inf_{\hat{\eta} \in [0,1]} L(\eta, \hat{\eta})$$

Proper Loss
A loss is said to be **proper** if it is Fisher consistent.

Computing the point-wise Bayes risk of proper losses is easy.

Example (Square Loss)
$L(\eta, \hat{\eta}) = (1 - \eta)\hat{\eta}^2 + \eta(1 - \hat{\eta})^2$ so its Bayes risk is

$$\underline{L}(\eta) = L(\eta, \eta) = (1 - \eta)\eta$$
Proper Losses: Examples

0-1 Loss

Log Loss

Cost-weighted Loss

Square Loss

“Boosting” Loss

Asymmetric Log Loss
Non-Proper Losses: Examples

Absolute Loss

Hinge Loss
Losses

Symmetric / Margin

Proper

Cost

Weighted

Log

0-1

Square

Hinge
Key Concepts: Taylor’s Theorem

Taylor’s Theorem - Integral Form

Given a function \(f : [x_0, x] \rightarrow \mathbb{R} \) then

\[
f(x) = f(x_0) + f'(x_0)(x - x_0) + \int_{x_0}^{x} f'(t)(x - t) \, dt
\]

Taylor’s Theorem - Alternative Form

For \(x, x_0 \in [a, b] \) and \(f : [a, b] \rightarrow \mathbb{R} \) suitably differentiable

\[
f(x) = f(x_0) + f'(x_0)(x - x_0) + \int_{a}^{b} g_c(x, x_0) f''(c) \, dc
\]

where

\[
g_c(x, x_0) = \begin{cases}
(x - c) & x_0 < c \leq x \\
(c - x) & x < c \leq x_0 \\
0 & \text{otherwise}
\end{cases}
\]
Representations
Theorem (Savage, 1971)

A loss \(l \) is **proper** iff its point-wise Bayes risk \(L \) is **concave** and satisfies

\[
L(\eta, \hat{\eta}) = L(\hat{\eta}) + (\eta - \hat{\eta})L'(\hat{\eta}).
\]
Savage’s Theorem

Theorem (Savage, 1971)

A loss ℓ is **proper** iff its point-wise Bayes risk L is **concave** and satisfies

$$L(\eta, \hat{\eta}) = L(\hat{\eta}) + (\eta - \hat{\eta})L'(\hat{\eta}).$$

Proof sketch.

$\Rightarrow \underline{L}(\eta)$ is infimum of $L(\eta, \hat{\eta})$ which is a lower envelope of lines thus concave, and $\underline{L}'(\eta) = \ell(1, \eta) - \ell(0, \eta)$.

\Rightarrow
Theorem (Savage, 1971)

A loss \mathcal{L} is proper iff its point-wise Bayes risk L is concave and satisfies

$$L(\eta, \hat{\eta}) = L(\hat{\eta}) + (\eta - \hat{\eta})L'(\hat{\eta}).$$

Proof sketch.

\Rightarrow $L(\eta)$ is infimum of $L(\eta, \hat{\eta})$ which is a lower envelope of lines thus concave, and $L'(\eta) = \ell(1, \eta) - \ell(0, \eta)$.

\Leftarrow Taylor expansion of $\Lambda(\eta)$ about $\hat{\eta}$ gives

$$\Lambda(\eta) = \Lambda(\hat{\eta}) + (\eta - \hat{\eta})\Lambda'(\hat{\eta}) + \int_{\hat{\eta}}^{\eta} (\eta - c) \Lambda''(c) \, dc$$

and since $-\Lambda'' \geq 0$, $L = \Lambda + B$ is min when $\hat{\eta} = \eta$ thus proper.
Savage’s Theorem: Example

$$\ell(0, \hat{\eta}) = -\log(1 - \hat{\eta})$$

$$\ell(1, \hat{\eta}) = -\log(\hat{\eta})$$

$$\eta \mapsto L(\eta, 0.14)$$

$$\eta \mapsto L(\eta, \eta)$$
Definition (Bregman Divergence)

Given a convex function $\phi : \mathbb{R} \to \mathbb{R}$ its Bregman Divergence is

$$B_\phi(s, s_0) = \phi(s) - \phi(s_0) - \langle s - s_0, \nabla \phi(s_0) \rangle$$
Definition (Bregman Divergence)

Given a convex function $\phi : \mathbb{R} \to \mathbb{R}$ its Bregman Divergence is

$$B_\phi(s, s_0) = \phi(s) - \phi(s_0) - \langle s - s_0, \nabla \phi(s_0) \rangle$$

The Savage result immediately shows the following

Corollary

If ℓ is a proper loss then its point-wise regret

$$B(\eta, \hat{\eta}) = L(\eta, \hat{\eta}) - \mathbb{E}(\eta)$$

is a Bregman divergence B_ϕ with $\phi = -\mathbb{E}$

since $L(\eta, \hat{\eta}) = \mathbb{E}(\hat{\eta}) + (\eta - \hat{\eta})\nabla L(\hat{\eta})$.
Theorem (Schervish, 1989 and others)

Given a proper loss \(\ell : Y \times [0, 1] \rightarrow \mathbb{R} \) there exists a (general) weight function \(w(c) \) such that

\[
\ell(y, \hat{\eta}) = \int_{0}^{1} \ell_c(y, \hat{\eta}) w(c) \, dc
\]

Cost-weighted misclassification losses:

\[
\ell_c(y, \hat{\eta}) = \begin{cases}
 c & y = 0, \hat{\eta} \geq c \quad \text{False Positive} \\
 (1 - c) & y = 1, \hat{\eta} < c \quad \text{False Negative}
\end{cases}
\]

Weight function:

\[
w(c) = -L''(c)
\]
Integral Representation: Example

\[\ell(1, \hat{\eta}) = -\log(\hat{\eta}) \]
\[\ell(0, \hat{\eta}) = -\log(1 - \hat{\eta}) \]

\[\implies \quad w(c) = \frac{1}{(1 - c)c} \]
Integral Representation: Examples

Square Loss

“Boosting” Loss

Asymmetric Loss
Proof Sketch.

Taylor’s theorem on L gives

$$L(\eta) = L(\hat{\eta}) + (\eta - \hat{\eta})L'(\hat{\eta}) + \int_0^1 g_c(\eta, \hat{\eta}) L''(c) \, dc$$

$$L(\eta, \hat{\eta}) = L(\eta) - \int_0^1 g_c(\eta, \hat{\eta}) L''(c) \, dc$$

$$\ell(y, \hat{\eta}) = L(y) + \int_0^1 g_c(y, \hat{\eta}) w(c) \, dc$$

where $w(c) = -L''(c)$ since $L(y, \hat{\eta}) = \ell(y, \hat{\eta})$ for $y \in \{0, 1\}$. Letting $\ell_c = g_c$ and recalling $L(0) = L(1) = 0$ gives result.
Point-wise Risk

\[L(\eta, \hat{\eta}) = \mathbb{E}_\eta[\ell(Y, \hat{\eta})] = \int_0^1 L_c(\eta, \hat{\eta}) w(c) \, dc \]

where \(L_c(\eta, \hat{\eta}) = \mathbb{E}_\eta[\ell_c(Y, \hat{\eta})] = \min((1 - \eta)c, (1 - c)\eta) \).
Point-wise Risk

\[L(\eta, \hat{\eta}) = \mathbb{E}_\eta[\ell(Y, \hat{\eta})] = \int_0^1 L_c(\eta, \hat{\eta}) w(c) \, dc \]

where \(L_c(\eta, \hat{\eta}) = \mathbb{E}_\eta[\ell_c(Y, \hat{\eta})] = \min((1 - \eta)c, (1 - c)\eta) \).

Point-wise Regret

\[B_c(\eta, \hat{\eta}) = \begin{cases}
|\eta - c| & \text{min}(\eta, \hat{\eta}) < c \leq \max(\eta, \hat{\eta}) \\
0 & \text{otherwise}
\end{cases} \]

and so

\[B(\eta, \hat{\eta}) = \int_0^1 B_c(\eta, \hat{\eta}) w(c) \, dc = \int_{\min(\eta, \hat{\eta})}^{\max(\eta, \hat{\eta})} |\eta - c| \, w(c) \, dc \]
Results
Theorem (Theorem 3 in Paper)

Suppose $B_{c_0}(\eta, \hat{\eta}) = \alpha$ for a $c_0 \in (0, 1)$. Then for any proper loss ℓ the following tight bound holds:

$$B(\eta, \hat{\eta}) \geq \max\{\beta_{c_0}(\alpha), \beta_{c_0}(-\alpha)\}$$

where $\beta_{c_0}(\alpha) = B(c_0 + \alpha, c_0)$.
Theorem (Theorem 3 in Paper)

Suppose $B_{c_0}(\eta, \hat{\eta}) = \alpha$ for a $c_0 \in (0, 1)$. Then for any proper loss ℓ the following tight bound holds:

$$B(\eta, \hat{\eta}) \geq \max\{\beta_{c_0}(\alpha), \beta_{c_0}(-\alpha)\}$$

where $\beta_{c_0}(\alpha) = B(c_0 + \alpha, c_0)$.

Proof.

When $\hat{\eta} \leq c_0 < \eta$ we have $B_{c_0}(\eta, \hat{\eta}) = \eta - c_0 = \alpha$ and so $\hat{\eta} \leq c_0 < \eta = c_0 + \alpha$. Thus,

$$B(\eta, \hat{\eta}) = B(c_0 + \alpha, \hat{\eta}) \geq B(c_0 + \alpha, c_0) = \beta_{c_0}(\alpha).$$

Similarly for $\eta \leq c_0 < \eta$. \qed
Surrogate Regret Bounds: Corollary

We say a loss is symmetric if, for all \(\hat{\eta} \in [0, 1] \) \(\ell(1, \hat{\eta}) = \ell(0, 1 - \hat{\eta}) \). All margin losses are symmetric.

Corollary

If \(\ell \) is symmetric and \(B(\eta, \hat{\eta}) = \alpha \) then

\[
B(\eta, \hat{\eta}) \geq \ell(\frac{1}{2}) - \ell(\frac{1}{2} + \alpha).
\]
Surrogate Regret Bounds: Corollary

We say a loss is symmetric if, for all $\hat{\eta} \in [0, 1]$ $\ell(1, \hat{\eta}) = \ell(0, 1 - \hat{\eta})$. All margin losses are symmetric.

Corollary

If ℓ is symmetric and $B(\eta, \hat{\eta}) = \alpha$ then

$$B(\eta, \hat{\eta}) \geq L(\frac{1}{2}) - L(\frac{1}{2} + \alpha).$$

Example (Square Loss Bound)

For square loss $L(\eta) = (1 - \eta)\eta$ so

$$B(\eta, \hat{\eta}) \geq \frac{1}{4} - [1 - (\frac{1}{2} + B_{\frac{1}{2}}(\eta, \hat{\eta}))\left(\frac{1}{2} + B_{\frac{1}{2}}(\eta, \hat{\eta})\right)]$$

$$\iff B_{\frac{1}{2}}(\eta, \hat{\eta}) \leq \sqrt{B(\eta, \hat{\eta})}$$
Losses

Symmetric / Margin

Proper

Cost

Weighted

0-1

Log

Square

Hinge

Classification

Calibrated
Theorem (Theorem 5 in Paper)

Let ℓ be a proper loss and ψ a link. Then the composite risk $L(\eta, \psi^{-1}(h))$ is convex in h when $\psi = -L'$.
Theorem (Theorem 5 in Paper)

Let \(\ell \) be a proper loss and \(\psi \) a link. Then the composite risk \(L(\eta, \psi^{-1}(h)) \) is convex in \(h \) when \(\psi = -L' \).

Proof.

Let \(\hat{\eta}_h = \psi^{-1}(h) \) and use Savage and inverse function theorems

\[
\frac{\partial}{\partial h} L(\eta, \hat{\eta}_h) = (\eta - \hat{\eta}_h) \frac{L''(\hat{\eta}_h)}{\psi'(\hat{\eta}_h)}
\]

\[
= (\hat{\eta}_h - \eta)
\]

since \(\psi' = -L'' \). So

\[
\frac{\partial^2}{\partial h^2} L(\eta, \hat{\eta}_h) = \frac{1}{\psi'(\hat{\eta}_h)} = \frac{1}{-L''(\hat{\eta}_h)} \geq 0
\]

since \(L \) is concave.
Conclusions
Proper losses are the “right” loss for probability estimation and make for good surrogates for classification.

- Point-wise Bayes risk is easy to analyse
- Rich structure via Savage’s Theorem and integral representation

Future work:
- Principled ways of choosing good surrogate losses?
- Better characterisation of convexity for losses?
Conclusions

Proper losses are the “right” loss for probability estimation and make for good surrogates for classification.

- Point-wise Bayes risk is easy to analyse
- Rich structure via Savage’s Theorem and integral representation

The weight functions characterise proper losses.

- Can interpret as which probabilities are important
- Large \(w(\eta) \) means “must estimate \(\eta \) well”
Proper losses are the “right” loss for probability estimation and make for good surrogates for classification.

- Point-wise Bayes risk is easy to analyse
- Rich structure via Savage’s Theorem and integral representation

The weight functions characterise proper losses.

- Can interpret as which probabilities are important
- Large $w(\eta)$ means “must estimate η well”

Future work:

- Principled ways of choosing good surrogate losses?
- Better characterisation of convexity for losses?
Thank You!

Psst! Looking for a Post-Doc position? Come speak to Bob Williamson or myself after the talk...