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Motivation

Bilinear models of the form

X=UV+E

data = matrix product + error

are very common in machine learning.
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Examples

Factor Analysis
Y=LX+E
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Factor Analysis

Y=LX+E
Probabilistic PCA
T=WX+E

Examples

User-Movie
Ratings

User
Features

Movie
Features

Probabilistic Matrix Factorization

X=UV+E
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Examples

Factor Analysis . Feature Feature
ata Present? Values
Y=LX+E T

Probabilistic PCA ﬁ
T=WX+E
Probabilistic Matrix Factorization

X=UV +E
Indian Buffet Process with a linear likelihood

X=ZA+E
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Motivation

 We are interested in doing large-scale Bayesian inference
in these models (focus on the IBP for now):

X=ZA+E

e Suppose

- We can compute P(X|Z) , but it's expensive
- We can compute P(A|X,Z)
- We cannot compute P(Z,A|X)
 We develop a fast sampler for inference in these models.
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Indian Buffet Process

Customers enter an “infinite buffet” one at a time and
« Sample a previously sampled dish based on its popularity.

« Sample Poisson( alpha / n ) new dishes.
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Indian Buffet Process

Customers enter an “infinite buffet’” one at a time and

« Sample a previously sampled dish based on its popularity.

« Sample Poisson( alpha / n ) new dishes.
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Indian Buffet Process

Customers enter an “infinite buffet” one at a time and
« Sample a previously sampled dish based on its popularity.

« Sample Poisson( alpha / n ) new dishes.
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Indian Buffet Process

Result is a non-parametric prior on feature assignments—a general tool
for many latent feature models—with some nice properties:

* Observations are exchangeable.

* |nfinite features, but finite datasets contain a finite number of

features.
F1 F2 F3 F4 F5 .
X1 )
X2
Z
X3 >
X4
J
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Full Model

Data Features Feature
Matrix Present Values
X Z A

KT

Z
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Full Model

Data Features Feature
Matrix Present Values
X Z A

X_W <

Note: this is not Blocked
Gibbs Sampling!
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Basic Sampling

First sample Z,,|X,A,Z.,

Z-W °
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Basic Sampling

First sample Z,,|X,A,Z.,, and then Z_,,|X,A,Z,,
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Basic Sampling

First sample Z,,|X,A,Z.,, and then Z_,,|X,A,Z,,
and then A|Z,X ...

Z-W °
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Basic Sampling

First sample Z,,|X,A,Z.,, and then Z_,,|X,A,Z,,

and then A|Z,X and then Z,,|X,A,Z.,, ...

Z-W °
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Basic Sampling

Advantage: Each iteration is fast to compute.

Disadvantage: Often slow to mix.

Z-W °
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Collapsed Gibbs Sampling

Since we can compute P(X|Z), integrate out A
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Collapsed Gibbs Sampling

Since we can compute P(X|Z), integrate out A
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Collapsed Gibbs Sampling

Sample each Z in turn, as before
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Collapsed Gibbs Sampling

Sample each Z in turn, as before
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Collapsed Gibbs Sampling

Advantage: Faster to mix.
Disadvantage: Inference no longer scales!

‘B UNIVERSITY OF ICML 2009

% CAMBRIDGE

25



Our solution: Accelerated Sampling

Keep a posterior on A. Observations stay independent!
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More formally: Consider one element

P(X|Z,A)P(A)dA
P(X,|Z 6 A P(X_|Z , A P(A)dA
P(X,|Z,,6 A P(AZ X )dA
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More formally: Consider one element
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More formally: Consider one element

[, P(X|Z, A)P(A)dA
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More formally: Consider one element

P(X|Z,A)P(A)dA
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Accelerated Gibbs Sampling

1. Initialise some Z, feature posterior
2. For each window of observations W

JANINPZa - INUAN

)

Get feature Remove W's Perform Reconstruct
posterior effect to get inference P(A|X,Z) with
P(A|X,Z2) P(AIX.w,Z-w) on zW new ZW

Considerations: how many observations should we
consider at once? Depends on the cost of computing
P(A|X,Z) and P(X|Z,A), numerical errors.
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Details for the IBP Model

If the prior on A, noise is Gaussian, then

« Posterior on A is Gaussian.

» Posterior can be updated with rank-one updates.
* Optimal window is 1.

Also, intelligently choosing to represent Gaussians in information
form (h, ) or covariance form (p, Z) helps maintain numerical
precision. Details in the paper.
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Experiments on Synthetic Data

Data generated from the prior; D=10, N = {50,100,250, 500}.

0.0215

Effective number of independent samples per sample

Effective number of independent samples per sample on Simulated Data
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Experiments on Smaller Datasets
D=36, N = 1000 D=1024, N = 722
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Experiments on Larger Datasets

D=1598, N = 2600 D=161, N = 10000

w10 AR Faces: Joint Probability vs. Time <108 Fiano: Joint Probability vs. Time
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Standard samplers
become impractical...
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Returning to an age-old question...

To marginalize or not marginalize, that is the question:

Whether 'tis more tractable for the sampler to suffer the
hills and valleys of local optima,

Or to take expectations against a set of variables, and
by integrating collapse them?
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Returning to an age-old question...

To marginalize or not marginalize, that is the question:

Whether 'tis more tractable for the sampler to suffer the
hills and valleys of local optima,

Or to take expectations against a set of variables, and
by integrating collapse them?

In answer: of a third example...
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Conclusions

* Maintaining a posterior within a sampler allows us to
perform fast inference in an important class of models

 |n particular, our approach allows us to scale inference
to large Indian Buffet Process models.

... code available on my website:
http://mlg.eng.cam.ac.uk/finale/wiki
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Effect of Window Size

= Effect of Window Size on Training Likelihood for the Yale dataset
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Experiments on Real Data




EEG Dataset

PP EEG: Joint Probability vs. Time
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