Prototype Vector Machine for Large Scale Semi-supervised Learning

Kai Zhang1 James T. Kwok2 Bahram Parvin1

1Life Science Division, Lawrence Berkeley National Lab
2Department of Computer Science and Engineering Hong Kong University of Science and Technology
Outline

1. Semi-supervised Learning
 - Transductive SVM
 - Graph-based Methods
 - Scaling up graph-based SSL

2. Prototype Vector Machine
 - Approximation via Prototypes
 - Low-rank Approximation Prototype
 - Label Reconstruction Prototype
 - Optimization

3. Experiments

4. Conclusion
Outline

1. **Semi-supervised Learning**
 - Transductive SVM
 - Graph-based Methods
 - Scaling up graph-based SSL

2. **Prototype Vector Machine**
 - Approximation via Prototypes
 - Low-rank Approximation Prototype
 - Label Reconstruction Prototype
 - Optimization

3. **Experiments**

4. **Conclusion**
Semi-supervised Learning

Setting:
- limited supervision: \(\{x_i, y_i\}_{i=1}^l \)
- unlabeled data: \(\{x_i\}_{i=l+1}^n \)

Goal:
- prediction using both labeled and unlabeled samples
Transductive SVM

\[
\min_{\{\bar{y}_i\}_{i=1}^u, w, b, \{\xi_i^*\}_{i=1}^u, \{\xi_i\}_{i=1}^l} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^l \xi_i + C^* \sum_{i=l+1}^n \xi_i^* \\
\text{s.t.} \quad y_i(w^* x_i + b) \leq 1 - \xi_i \\
\quad \quad \quad y_i^*(w^* x_i + b) \leq 1 - \xi_i^*
\]

- transductive SVM (text classification) [Joachims et al. 1999]
- linear SVM [Fung and Mangasarian 2001]
- SDP relaxations [Bie and Cristianini 2004] [Xu et al. 2008]
- CCCP optimization [Collobert et al. 2006]
Graph-based Methods

Graph Regularization (transductive)

$$
\min_{f=\left[f_f \ f_u\right]^T} \underbrace{\text{tr}(f' S f)}_{\text{smoothness}} + \underbrace{C_1 L(f_f, Y_f)}_{\text{loss}} + \underbrace{C_2 \|f_u\|_F^2}_{\text{complexity}}
$$

- S: (normalized) Graph Laplacian

Examples:
- local and global consistency [Zhou et al. 2003]
- Gaussian fields and harmonic function [Zhu et al. 2003]
- nonparametric function induction [Delalleau et al. 2005]
Graph-based Methods

Manifold Regularization (inductive)

\[
\min_f \sum_{i=1}^{l} L(f(x_i), y_i) + \gamma_A \|f\|_K + \gamma_I \|f\|_G
\]

\[
\Rightarrow f(x) = \sum_{i=1}^{l+u} \alpha_i K(x, x_i)
\]

- manifold regularization [Belkin 2002]
- Lap-RLS, Lap-SVM
Fast graph-based SSL Methods

Fast algorithms ($O(m^2 n)$)

- **Harmonic mixture** [Zhu et al. 2002]
 - combine generative model with graph-method
- **Nonparametric function induction** [Delalleau et al. 2005]
 - label reconstruction by landmark points
 - ignores important regularization
- **Nyström method** [Gustavo et al. 2007]
 - speed up kernel matrix inverse

Survey

- Semi-supervised learning literature survey [Zhu]
- Large scale semi-supervised learning [Weston]
Outline

1 Semi-supervised Learning
 • Transductive SVM
 • Graph-based Methods
 • Scaling up graph-based SSL

2 Prototype Vector Machine
 • Approximation via Prototypes
 • Low-rank Approximation Prototype
 • Label Reconstruction Prototype
 • Optimization

3 Experiments

4 Conclusion
Observation

Regularization: bottleneck of graph-based SSL

- manipulation of $n \times n$ kernel matrix
 - multiplication
 - inverse
- lead to complex model
 - spans over labelled and unlabeled data
 \[f(x) = \sum_{i=1}^{l+u} \alpha_i K(x, x_i) \]
 - slow training and testing
Approximation via Prototypes

Basic Idea

Basic idea: approximate regularization via prototypes

1. Low-rank approximation prototypes
 - preserve structures of kernel matrix
 - crucial for manifold regularization
 - less space

2. Label-reconstruction prototypes
 - reduce model complexity
 - fast testing
Low-rank Approximation

Given \(n \times n \) kernel matrix \(K \) (on \(\mathcal{X} \))

- find \(K \approx GG', \ G \in \mathbb{R}^{n \times m} \) (\(m \ll n \))

Nyström Method

1. Choose \(m \ll n \) columns \(E_{n \times m} \)
 - corresponds to landmark set \(\mathcal{Z} \), \(|\mathcal{Z}|=m \)
 - \(W_{m \times m} \): kernel matrix on \(\mathcal{Z} \)

2. Reconstruct by \(K \approx EW^{-1}E' \)
Low-rank Approximation Prototype

\[z_i' \in \mathcal{Z} \]: low-rank approximation prototypes

- can be chosen as k-means clustering centers for
 - Gaussian
 - linear
 - polynomial

Detailed analysis in [Zhang et. al. 2008]

Nyström low-rank approximation quality depends on the encoding power of landmark points.
A small set of prototypes (with labels estimated) can reconstruct the overall label landscape.

Label reconstruction: \(g(x) = \sum_{i=1}^{k} f_i K(x, v_i) \) or \(f = Hf_v \)

\(v_i \)'s: label reconstruction prototypes.
Using g to approximate f:

$$\min_{\beta_i, v_i} D(\sum_{i=1}^{l+u} \alpha_i K(x, x_i), \sum_{i=1}^{m} \beta_i K(x, v_i))$$

$$\min_{\beta_i, v_i} \left\{ f(x) \bigg| \sum_{i=1}^{l+u} \alpha_i K(x, x_i), \sum_{i=1}^{m} \beta_i K(x, v_i) \right\}$$

- α_i’s unknown
- alternative: basis in f should be well-coded by those in g.

$$Q = \sum_{i=1}^{l+u} \sum_{j=1}^{k} \min D_{KL} \left[K(x, x_i) \| K(x, v_j) \right]$$

Gaussian kernel $K \Rightarrow Q = \frac{1}{4h^2} \sum_i \sum_j \min \| x_i - v_j \|^2 \Rightarrow k$-means centers as v_j’s.
Rephrasing Optimization with Prototypes

Two types of prototypes

1. low-rank approximation \(K \approx EW^{-1}E' \)
 - \(E \in \mathbb{R}^{n \times m} \), \(W \in \mathbb{R}^{m \times m} \),

2. label reconstruction \(f \approx Hf_v \)
 - \(f \in \mathbb{R}^{n \times 1}; f_v \in \mathbb{R}^{k \times 1}, H \in \mathbb{R}^{n \times k} \)

Regularization can be approximated by

\[
 f^T S f \approx f'_v H' (\tilde{D} - EW^{-1}E^T) H f_v \\
 O(\left(m + k\right)^2 n)
\]
Optimization

L_2 Loss Function

- multiclass, L_2-loss function
- labels $Y_l \in \mathbb{R}^{l \times C}$,

$$
\min_{f_v \in \mathbb{R}^{m \times k}} \text{tr} \left((Hf_v)'S(Hf_v) \right) + C_1 \| Hf_v - Y_l \|_F^2 + C_2 \| H_f v \|_F^2
$$

training

$$f^*_v = (H'SH + C_1 H_l' H_l + C_2 H_u' H_u)^{-1} E'_l Y_l$$

testing

$$f = Hf_v$$

$O(n(m + k)^2)$ time
Hinge Loss Function

- Binary, $Y_l \in \{\pm 1\}^{l \times 1}$, Hinge loss,
- $H_l = [e_1, e_2, ..., e_l]^T$
- $A = H^T S H + C_2 H_u^T H_u \in \mathbb{R}^{k \times k}$
- $Q = H_l A^{-1} H_l^T \odot Y_l Y_l^T \in \mathbb{R}^{l \times l}$

Primal

$$\min_{f_v \in \mathbb{R}^{m \times 1}} \frac{1}{2} f_v^T A f_v + C_1 \sum_{i=1}^{l} \xi_i$$

s.t. $y_i e_i^T f_v \geq 1 - \xi_i$, $\xi_i \geq 0$

Dual

$$\max -\frac{1}{2} \beta^T Q \beta + 1_l^T \beta$$

s.t. $0 \leq \beta_i \leq C_1$, $i = 1, 2, ..., l.$
Outline

1 Semi-supervised Learning
 - Transductive SVM
 - Graph-based Methods
 - Scaling up graph-based SSL

2 Prototype Vector Machine
 - Approximation via Prototypes
 - Low-rank Approximation Prototype
 - Label Reconstruction Prototype
 - Optimization

3 Experiments

4 Conclusion
Experimental Setting

- methods compared
 - **LGC**: local and global consistency;
 - **Lap-RLS**: Laplacian-regularized RLS;
 - **NYS-LGC**: Nyström-based LGC;
 - **NFI**: nonparametric function induction;
 - **PVM(1)**: L_2 loss;
 - **PVM(2)** Hinge loss

- 15 data sets (semi-supervised learning, libsvm)
- Gaussian kernel ($m = k$).
- $m = 0.1n$ for $n \leq 3000$; $m = 200$ for larger n
- 50 labels per class; randomly repeat 30 times
Benchmark Data

Classification errors of different algorithms.

<table>
<thead>
<tr>
<th>Data(#cls)</th>
<th>LGC</th>
<th>LAP-RLS</th>
<th>NYS-LGC</th>
<th>NFI</th>
<th>PVM(1)</th>
<th>PVM(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>g241c(2)</td>
<td>21.92</td>
<td>22.02</td>
<td>24.19</td>
<td>28.07</td>
<td>24.50</td>
<td>23.21</td>
</tr>
<tr>
<td>g241d(2)</td>
<td>28.10</td>
<td>22.36</td>
<td>30.98</td>
<td>30.82</td>
<td>25.15</td>
<td>24.85</td>
</tr>
<tr>
<td>digit1(2)</td>
<td>5.74</td>
<td>5.74</td>
<td>6.68</td>
<td>9.83</td>
<td>4.18</td>
<td>3.72</td>
</tr>
<tr>
<td>USPS(2)</td>
<td>4.57</td>
<td>6.11</td>
<td>9.72</td>
<td>5.49</td>
<td>5.29</td>
<td>6.35</td>
</tr>
<tr>
<td>coil(6)</td>
<td>12.38</td>
<td>21.17</td>
<td>18.75</td>
<td>30.93</td>
<td>13.41</td>
<td>–</td>
</tr>
<tr>
<td>BCI(2)</td>
<td>44.43</td>
<td>29.16</td>
<td>45.45</td>
<td>45.67</td>
<td>33.59</td>
<td>31.65</td>
</tr>
<tr>
<td>Text(2)</td>
<td>23.09</td>
<td>23.99</td>
<td>34.40</td>
<td>32.54</td>
<td>30.4</td>
<td>26.29</td>
</tr>
<tr>
<td>usps3589(4)</td>
<td>2.46</td>
<td>4.54</td>
<td>6.89</td>
<td>7.14</td>
<td>3.66</td>
<td>–</td>
</tr>
<tr>
<td>splice(2)</td>
<td>22.85</td>
<td>19.78</td>
<td>30.56</td>
<td>34.56</td>
<td>23.47</td>
<td>25.32</td>
</tr>
<tr>
<td>dna(3)</td>
<td>27.31</td>
<td>17.72</td>
<td>29.53</td>
<td>43.38</td>
<td>15.87</td>
<td>–</td>
</tr>
<tr>
<td>svmgd1a(2)</td>
<td>–</td>
<td>–</td>
<td>6.32</td>
<td>14.21</td>
<td>5.24</td>
<td>6.08</td>
</tr>
<tr>
<td>usps-full(10)</td>
<td>–</td>
<td>–</td>
<td>17.68</td>
<td>14.43</td>
<td>7.35</td>
<td>–</td>
</tr>
<tr>
<td>satimage(6)</td>
<td>–</td>
<td>–</td>
<td>16.36</td>
<td>19.27</td>
<td>14.97</td>
<td>–</td>
</tr>
</tbody>
</table>
Benchmark Data

Time consumptions (seconds) of different algorithms.

<table>
<thead>
<tr>
<th>Data(n/dim)</th>
<th>LGC</th>
<th>LAP-RLS</th>
<th>NYS-LGC</th>
<th>NFI</th>
<th>PVM(1)</th>
<th>PVM(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>g241c(1500/241)</td>
<td>140.84</td>
<td>129.86</td>
<td>0.86</td>
<td>0.48</td>
<td>3.30</td>
<td>3.19</td>
</tr>
<tr>
<td>g241d(1500/241)</td>
<td>129.78</td>
<td>142.65</td>
<td>0.84</td>
<td>0.49</td>
<td>3.31</td>
<td>3.16</td>
</tr>
<tr>
<td>digit1(1500/241)</td>
<td>140.51</td>
<td>131.08</td>
<td>0.84</td>
<td>0.48</td>
<td>3.31</td>
<td>3.15</td>
</tr>
<tr>
<td>USPS(1500/241)</td>
<td>139.23</td>
<td>131.59</td>
<td>0.74</td>
<td>0.47</td>
<td>3.28</td>
<td>3.14</td>
</tr>
<tr>
<td>coil2(1500/241)</td>
<td>151.36</td>
<td>120.48</td>
<td>0.87</td>
<td>0.48</td>
<td>3.26</td>
<td>3.47</td>
</tr>
<tr>
<td>coil(1500/241)</td>
<td>146.92</td>
<td>115.22</td>
<td>0.79</td>
<td>0.49</td>
<td>3.35</td>
<td></td>
</tr>
<tr>
<td>BCI(400/117)</td>
<td>3.08</td>
<td>1.94</td>
<td>0.53</td>
<td>0.22</td>
<td>0.71</td>
<td>1.09</td>
</tr>
<tr>
<td>Text(1500/11960)</td>
<td>139.67</td>
<td>216.37</td>
<td>9.14</td>
<td>13.26</td>
<td>30.24</td>
<td>34.24</td>
</tr>
<tr>
<td>2-moon(1000/2)</td>
<td>49.76</td>
<td>16.11</td>
<td>0.026</td>
<td>0.24</td>
<td>0.083</td>
<td>0.21</td>
</tr>
<tr>
<td>usps3589(719/64)</td>
<td>13.94</td>
<td>13.13</td>
<td>0.15</td>
<td>0.086</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>splice(3175/60)</td>
<td>1622.51</td>
<td>1439.51</td>
<td>2.49</td>
<td>0.83</td>
<td>4.87</td>
<td>4.24</td>
</tr>
<tr>
<td>dna(3186/180)</td>
<td>1566.91</td>
<td>1463.75</td>
<td>3.07</td>
<td>1.22</td>
<td>8.92</td>
<td></td>
</tr>
<tr>
<td>svmgd1a(7089/4)</td>
<td>–</td>
<td>–</td>
<td>3.22</td>
<td>1.66</td>
<td>8.06</td>
<td>5.38</td>
</tr>
<tr>
<td>usps-full(7291/256)</td>
<td>–</td>
<td>–</td>
<td>3.96</td>
<td>2.87</td>
<td>22.48</td>
<td></td>
</tr>
<tr>
<td>satimage(6435/36)</td>
<td>–</td>
<td>–</td>
<td>3.34</td>
<td>2.57</td>
<td>11.56</td>
<td></td>
</tr>
</tbody>
</table>
Case Study

Five-class classification

- MNIST digits 3,5,6,8,9
- \(n = 29270 \); \(\text{dim} = 784 \)

Algorithm properties

- scalability
- performance over \# labels
- performance over prototype size
Properties of PVM(1)

From left to right: time v.s. sample size; error v.s. #labels; error v.s.#prototypes.
Outline

1. Semi-supervised Learning
 - Transductive SVM
 - Graph-based Methods
 - Scaling up graph-based SSL

2. Prototype Vector Machine
 - Approximation via Prototypes
 - Low-rank Approximation Prototype
 - Label Reconstruction Prototype
 - Optimization

3. Experiments

4. Conclusion
Conclusions

- Conclusion
 - Computational bottleneck of Graph-based SSL
 - the regularization term
 - alleviated by using prototype approximations

- Future work
 - prototype selection
 - under different kernels
 - using label information
 - different label reconstruction schemes
Thank you!