1 A user with some hidden interests make a query on Yahoo.

2 Yahoo chooses an ad to display.

3 The user either clicks on the ad or not, (resulting in a payoff to Yahoo or not).
A Mathematical Description

Data generation process:

1. The world chooses \((x, r_1, \ldots, r_k)\) and reveals \(x\).

2. A policy chooses \(a \in \{1, \ldots, k\}\) according to some distribution (uniform for the talk).

3. The world reveals \(r_a\).
A Mathematical Description

Data generation process:

1. The world chooses \((x, r_1, \ldots, r_k)\) and reveals \(x\).
2. A policy chooses \(a \in \{1, \ldots, k\}\) according to some distribution (uniform for the talk).
3. The world reveals \(r_a\).

Goal: Find a policy \(\pi : X \rightarrow \{1, \ldots, k\}\) maximizing the expected reward

\[
E_{(x, \vec{r}) \sim D} \left[r_{\pi(x)} \right]
\]

with respect to the underlying distribution \(D\) over \(X \times [0, 1]^k\).
A Mathematical Description

Data generation process:

1. The world chooses \((x, r_1, \ldots, r_k)\) and reveals \(x\).

2. A policy chooses \(a \in \{1, \ldots, k\}\) according to some distribution (uniform for the talk).

3. The world reveals \(r_a\).

Goal: Find a policy \(\pi : X \rightarrow \{1, \ldots, k\}\) maximizing the expected reward

\[
E_{(x, \bar{r}) \sim D} \left[r_{\pi(x)} \right]
\]

with respect to the underlying distribution \(D\) over \(X \times [0, 1]^k\).

Loss is unknown even at training time! Exploration required, but still simpler than reinforcement learning.
The Offset Trick for \(k = 2 \) (two actions)

Partial label sample \((x, a, r_a) \mapsto \) binary importance weighted sample

\[
\begin{cases}
(x, a, r_a - \frac{1}{2}) & \text{if } r_a \geq \frac{1}{2} \\
(x, \bar{a}, \frac{1}{2} - r_a) & \text{if } r_a < \frac{1}{2}
\end{cases}
\]

\(x = \) side information

\(\bar{a} = \) the other label (action)

\(|r_a - \frac{1}{2}| = \) importance weight
The Offset Trick for \(k = 2 \) (two actions)

Partial label sample \((x, a, r_a)\) \(\mapsto\) binary importance weighted sample

\[
\begin{cases}
(x, a, r_a - \frac{1}{2}) & \text{if } r_a \geq \frac{1}{2} \\
(x, \bar{a}, \frac{1}{2} - r_a) & \text{if } r_a < \frac{1}{2}
\end{cases}
\]

\(x = \) side information

\(\bar{a} = \) the other label (action)

\(|r_a - \frac{1}{2}| = \) importance weight

Remove the weights using rejection sampling with probability proportionate to the weight [Zadrozny, L, Abe, ICDM2002]

Binary classification problem
The Offset Trick for $k = 2$ (two actions)

Partial label sample $(x, a, r_a) \mapsto$ binary importance weighted sample

\[
\begin{cases}
(x, a, r_a - \frac{1}{2}) \quad \text{if } r_a \geq \frac{1}{2} \\
(x, \overline{a}, \frac{1}{2} - r_a) \quad \text{if } r_a < \frac{1}{2}
\end{cases}
\]

$x = \text{side information}$

$\overline{a} = \text{the other label (action)}$

$|r_a - \frac{1}{2}| = \text{importance weight}$

Remove the weights using rejection sampling with probability proportionate to the weight [Zadrozny, L, Abe, ICDM2002] \mapsto Binary classification problem

Learn a binary classifier and use it as a partial label policy
Induced binary distribution D'

- Draw partial label sample $(x, \vec{r}) \sim D$ and action a.
- With probability $2|r_a - \frac{1}{2}|$:
 - If $r_a \geq \frac{1}{2}$, generate (x, a); otherwise generate (x, \overline{a}).
- The induced problem is noisy. The importance trick reduces the range of importances, reducing the noise rate.
Induced binary distribution D'

- Draw partial label sample $(x, \bar{r}) \sim D$ and action a.
- With probability $2|r_a - \frac{1}{2}|$:

 If $r_a \geq \frac{1}{2}$, generate (x, a); otherwise generate (x, a).
- The induced problem is noisy. The importance trick reduces the range of importances, reducing the noise rate.

Examples: Actions 1 and 2

1. $r_1 = \frac{1}{2}, r_2 = 1$: Examples of class 1 have weight 0; learn a constant 2 classifier.

2. $r_1 = 0, r_2 = 1$: All examples have class 2 with the same weight; learn a constant 2 classifier.

3. $r_1 = 0.75, r_2 = 1$: $D'(1) = \frac{1}{3}, D'(2) = \frac{2}{3}$. Some examples have each label, but the proportion is improved by the offset.
Analysis for \(k = 2 \)

Binary regret of classifier \(f \) on \(D' \):

\[
\text{reg}_{0/1}(f, D') = \Pr_{(x,y) \sim D'}(f(x) \neq y) - \min_{f'} \Pr_{(x,y) \sim D'}(f'(x) \neq y)
\]

For \(k = 2 \), the offset policy using \(f \) is \(f \).

Regret of policy \(f \) on \(D \):

\[
\text{reg}(f, D) = \mathbb{E}_{(x,\tilde{r}) \sim D} \left[r_{f^*}(x) - r_f(x) \right]
\]

where \(f^* \) is the optimal policy.

Binary Offset Theorem

For all 2-action partial label problems \(D \) and binary classifiers \(f \):

\[
\text{reg}(f, D) \leq \text{reg}_{0/1}(f, D')
\]
Denoising for $k > 2$ arms

Use the same construction at each node. Each non-leaf predicts the best of a pair of winners from the previous round. Internal nodes only get an example if all leaf-ward nodes agree with the label.

Partial label policy on x: follow the chain of predictions from root to leaf, output the leaf.
Training on example \((x, 3)\)

\[
\begin{align*}
1 & \quad f_{1,2} \\
2 & \quad f_{1,2} \\
3 & \quad f_{3,4} \quad (x, \text{left}) \\
4 & \quad f_{3,4} \\
5 & \quad f_{5,6} \\
6 & \quad f_{5,6} \\
7 & \quad f_{5,6},7 \\
\end{align*}
\]
Training on example \((x, 3)\)

- \(f_{1,2}\)
- \(f_{3,4}\) \((x, \text{left})\)
- \(f_{\{1,2\},\{3,4\}}\) \((x, \text{right})\)
- Conditioned on \(f_{3,4}(x) = \text{left}\)

Note: Can be composed with either batch or online base learners
Training on example \((x, 3)\)

Note: Can be composed with either batch or online base learners.
\(D' = \) random binary problem according to chance that binary problem is fed an example under \(D \).
\(f = \) binary classifier that predicts based on \(x \) and the choice of binary problem according to \(D' \).
\(\pi_f = \) offset tree policy based on \(f \).

Offset Tree Theorem

For all \(k \)-choice partial label problems \(D \) and binary classifiers \(f \):

\[
\text{reg}(\pi_f, D) \leq (k - 1) \cdot \text{reg}_{0/1}(f, D')
\]

Lower bound: no reduction has a better regret analysis (holds for any value of \(\text{reg}_{0/1}(f, D') \)).
Other Solution Approaches

Argmax Regression

Important fact: the minimizer of squared error is the conditional mean.

1. Learn a regressor f to predict r_a given (x, a).
2. Let $\pi_f(x) = \arg\max_a f(x, a)$

Importance-Weighted Classification Approach (Zadrozny’03)

Training:

1. For each (x, a, r) example, create an importance weighted multiclass example (x, a, rk).
2. Reduce importance weighted multiclass to binary using Costing and ECT for multiclass to binary reduction.

Testing: Make a multiclass prediction.
A Comparison of Approaches

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Policy Regret Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argmax Regression</td>
<td>$\sqrt{2k\text{reg}(s, D_{AR})}$</td>
</tr>
<tr>
<td>Importance-weighting Classification</td>
<td>$4k\text{reg}(b, D_{IWC})$</td>
</tr>
<tr>
<td>Offset Tree</td>
<td>$(k - 1)\text{reg}(b, D_{OT})$</td>
</tr>
</tbody>
</table>

How do you expect things to work, experimentally?
Offline Application, by simulation on UCI, comparing with Argmax and IW

![Graphs showing performance comparison between M5P, REPTree, and y=x in Offset Tree Regression and Importance weighting.](image-url)
Online Application, by simulation on RCV1, comparing with Banditron

![Error rate vs. number of examples graph](image1)

![Error rate vs. number of examples graph](image2)
Thanks!

Paper off my webpage → interactive learning
Further discussion at http://hunch.net