Consistency of Network Modularities

Peter Bickel

UC Berkeley

(Joint work with Aiyou Chen, Bell Labs)

Machine Learning Summer School, University of Chicago

June 11, 2009

(With assistance of Jing Lei)
Outline

1. The sub-community identification problem and modularities
2. A “nonparametric” probability model for unlabelled graphs and its relation to block models
3. The difficulties of maximum likelihood
4. Consistency of Newman-Girvan and other modularities and refined comparison
5. Algorithms, simulations and real data
6. Discussion
Community identification problem

Fig. 1 Karate Club (Newman, PNAS 2007)
Ethnicity of students

Fig. 2 Self-identified ethnicity of high school students (Newman & Leicht, PNAS 2007)
A Mathematical Formulation

- $G = (V, E)$: undirected graph
- $\{1, \cdots, n\}$: Arbitrarily labeled vertices
- A: adjacency matrix
- $A_{ij} = 1$ if edge between i and j (relationship)
- $A_{ij} = 0$ otherwise
The Problem

- $V = V_1 \cup \cdots \cup V_K$
- V_i: communities, $i = 1, \cdots, K$, where K is known.
- Problem: Determine V_j using only A
Approaches: Maximize Modularities

- Newman-Girvan modularity (Phys. Rev. E, 2004) $e = (e_1, \cdots, e_n)$:

 $e_i \in \{1, \cdots, K\}$ (community labels)

- The modularity function:

 $$Q_N(e) = \sum_{k=1}^{K} \left(\frac{O_{kk}(e,A)}{D_k(e)} - \left(\frac{D_k(e)}{D_+} \right)^2 \right),$$

 where

 $O_{ab}(e, A) = \sum_{i,j} A_{ij} \mathbf{1}(e_i = a, e_j = b)$

 $= (\# \text{ of edges between } a \text{ and } b) \quad a \neq b$

 $= 2 \times (\# \text{ of edges between members of } a), \quad a = b$

 $D_k(e) = \sum_{l=1}^{K} O_{kl}(e,A)$

 $= \text{sum of degrees of nodes in } k$

 $D_+ = \sum_{k=1}^{K} D_k(e) = 2 \times (\# \text{ of edges between all nodes})$
Block Models (Holland, Laskey and Leinhardt 1983)

Probability models

- Community label: \(\mathbf{c} = (c_1, \cdots, c_n) \) i.i.d. multinomial \((\pi_1, \cdots, \pi_K)\).

- Relation:

\[
P(A_{ij} = 1|c_i = a, c_j = b) = P_{ab}.
\]

- \(A_{ij} \) conditionally independent

\[
P(A_{ij} = 0) = 1 - \sum_{1 \leq a, b \leq K} \pi_a \pi_b P_{ab}.
\]
Frequentist Approach to Sub-community Identification

(Similar for Bayesian)

The problem is NP complete but in practice seems solvable quickly.

Solution

1) Compute likelihood \((A, \pi, P)\)

2) Maximize by EM

3) Compute \(\hat{P}, \hat{\pi}, \mathbb{P}(c_i = a|A, \hat{P}, \hat{\pi})\)

4) Classify by maximizing

\[
P(c_i = a|A, \hat{P}, \hat{\pi}).
\]
The Swapping Algorithm

Iterate the loop below until modularity stops increasing:

For $i = 1 : n$

- Label switching: $e_i = \arg\max Q(\{e_1, \ldots, e_n\})$.
- Compute modularity: $Q(\{e_1, \ldots, e_n\})$.

For profile likelihood, one can mix label switching with parameter update to speed up computation.
Nonparametric Asymptotic Model for Unlabeled Graphs

\[\mathcal{L}(A_{ij} : i, j \geq 1) = \mathcal{L}(A_{\pi_i, \pi_j} : i, j \geq 1), \]

for all permutations \(\pi \iff \exists g : [0, 1]^4 \to \{0, 1\} \text{ such that } A_{ij} = g(\alpha, \xi_i, \xi_j, \eta_{ij}), \]

where

\(\alpha, \xi_i, \eta_{ij}, \text{ all } i, j \geq i, \text{ i.i.d. } \mathcal{U}(0, 1), \ g(\alpha, u, v, w) = g(\alpha, v, u, w), \)

\(\eta_{ij} = \eta_{ji}. \)
Ergodic Models

\(\mathcal{L} \) is an ergodic probability iff for \(g \) with \(g(u, v, w) = g(v, u, w) \)
\(\forall (u, v, w), \)

\[
A_{ij} = g(\xi_i, \xi_j, \eta_{ij}).
\]

\(\mathcal{L} \) is determined by

\[
h(u, v) \equiv \mathbb{P}(A_{ij} = 1|\xi_i = u, \xi_j = v)
\]

\[
h(u, v) = h(v, u).
\]
Identifiability

- h is not uniquely determined.

If $\psi : [0, 1] \rightarrow [0, 1]$ has $\psi(\xi) \sim \mathcal{U}(0, 1)$, then
\[
\{h(\psi(\xi_i), \psi(\xi_j)), i, j \geq 1\}
\]
has the same law \mathcal{L}.

- Proposal

\[
g(u) \equiv \mathbb{P}(A_{ij} = 1 | \xi_i = u) = \int_0^1 h(u, v) dv.
\]

$h_{\text{CAN}}(u, v)$ is uniquely determined by:

- $i)$ \{h_{\text{CAN}}(\xi_i, \xi_j)\} $\sim \mathcal{L}$.

- $ii)$ $g_{\text{CAN}}(u) = \int_0^1 h_{\text{CAN}}(u, v) dv$ \uparrow in u.

Identifiability (cont’d)

• \(g(\xi_i) \sim F \), which is identifiable. Assume that \(F \) is continuous.

• Define measure-preserving

\[
\psi(u) = F(g(u)).
\]

• \(h_{\text{CAN}}(u, v) = h(\psi(u), \psi(v)) \)

\[
g_{\text{CAN}}(u) = F^{-1}(u), \uparrow.
\]

• If \(h(\xi_i, \xi_j) \sim \mathcal{L} \sim h_{\text{CAN}}(\xi_i, \xi_j) \), then

\[
P[g(\xi) \leq u] = F(u) = g^{-1}(u),
\]

if \(g \uparrow \).
Block Models as Approximations

- $h(u, v) = h_{ab}$
 if $\sum_{i=1}^{a-1} \pi_i \leq u < \sum_{i=1}^{a} \pi_i$ and $\sum_{i=1}^{b-1} \pi_i \leq v < \sum_{i=1}^{b} \pi_i$,
 $\sum_b \pi_b h(a, b) \uparrow$ in a.

- Sieve: Fit K_n blockmodel $\lambda_1 = \cdots = \lambda_K = K^{-1}$.

\[\hat{h}_n(u, v) = \hat{h}_{ab} \]

for $\frac{a-1}{K} \leq u < \frac{a}{K}$ and $\frac{b-1}{K} \leq v < \frac{b}{K}$.
Profile Likelihood Modularities

\[Q_L(e) = \sum_{a=1}^{K} n_a(e) \log \frac{n_a(e)}{n} + \sum_{a<b} n_{ab}(e) \tau \left(\frac{O_{ab}(e, A)}{n_{ab}(e)} \right) \]

\[+ \sum_{a=1}^{K} n_{aa}(e) \tau \left(\frac{O_{aa}(e, A)}{2n_{aa}(e)} \right) \]

where

\[\tau(x) = x \log x + (1 - x) \log(1 - x). \]

\[e \equiv (e_1, \ldots, e_n). \]

\[n_a(e) \equiv \sum 1(e_i = a). \]

\[n_{ab}(e) = \begin{cases}
 n_a(e)n_b(e), & a \neq b \\
 \binom{n_a}{2}, & a = b
\end{cases} \]
Asymptotic Approximation for Block Models

Consider sequence of models \(\mathcal{L}_n \) (single model if \(\lambda_n = n \)).

\[\mathbb{E}D_+ = \gamma_n \equiv \gamma n \lambda_n \]
\[\gamma_n = n^2 \sum_{a,b} \pi_a \pi_b P_{ab}^{(n)} \]
\[\mathcal{L}_n \equiv \{ \mathcal{L}(A : \pi, P^{(n)}) : P^{(n)} = n^{-1} W \lambda_n \} , \quad W = \| W \|_{ab}, W_{ab} > 0. \]
\[\lambda_n \to \infty \]
\[\lambda_n \leq n \]
Consistency of Modularities

General Modularity:

- Given Q: $K \times K$ positive matrices $\times K$ simplex $\rightarrow \mathbb{R}^+$.
- Q modularity $\equiv Q \left(\frac{O(e,A)}{D_+}, f(e) \right)$.

 $O(e, A) \equiv ||o_{ab}(e)||$, $f(e) \equiv (f_1(e), \ldots, f_K(e))^T$, $f_j(e) \equiv \frac{n_j}{n}$.

 $\hat{c} \equiv \arg \max Q \left(\frac{O(e,A)}{D_+}, f(e) \right)$.

Conditions

\textbf{C1:} a) The matrix \(W \) has no two rows equal and all elements are > 0.

b) \(\pi_i > 0, \ i = 1, \ldots, K. \)

\textbf{C2:} \(\mathcal{M} = \{ R : R_{ab} \geq 0, \ \text{all } a, b, R^T 1 = \pi \}. \)

\(F(R) \equiv Q(RP^{(n)}R^T, R1), \ P^{(n)} = \frac{\lambda_n}{n} W. \)

\(F(R) \) is uniquely maximized over \(\mathcal{M} \) at \(R = \pi^D \equiv \text{diag}(\pi_1, \ldots, \pi_K). \)

\textbf{C3:} \(\frac{\partial F}{\partial r_{ab}} (\pi^D) < 0, \ a \neq b. \)

\textbf{C4:} \(\frac{\lambda_n}{\log n} \to \infty. \)
Global Consistency

Suppose $\hat{c} = \arg \max Q \left(\frac{O(e,A)}{D_+}, f(e) \right)$
and C1-4 hold. Then:

$$\frac{1}{\lambda_n} \log P[\hat{c} \neq c] \rightarrow -s_Q, \quad \text{with } s_Q > 0.$$

See also Snijders and Nowicki (1997) Journal of Classification.
Estimation of Block Model Parameters

 $$\hat{\pi}_a \equiv \frac{1}{n} \sum_{i=1}^{n} 1(\hat{c}_i = a) \equiv \frac{\hat{n}_a}{n}$$

 $$\hat{P}_{ab} = \frac{1}{\hat{n}_a \hat{n}_b} \sum_{i,j} \{1(\hat{c}_i = a, \hat{c}_j = b)\} \quad a \neq b$$

 $$\hat{P}_{aa} = \frac{1}{\binom{\hat{n}_a}{2}} \sum_{i<j} \{1(\hat{c}_i = a, \hat{c}_j = a)\}$$

- Efficiency: If $\lambda_n \sim n$,

 $$\sqrt{n}(\hat{\pi}_a - \pi_a) \Rightarrow N(0, \pi_a (1 - \pi_a))$$

 $$n(\hat{P}_{ab} - P_{ab}) \Rightarrow N \left(0, \frac{P_{ab} (1 - P_{ab})}{\pi_a \pi_b} \right), \quad a \neq b$$

 $$\Rightarrow N \left(0, \frac{2P_{aa} (1 - P_{aa})}{\pi_{aa}^2} \right), \quad a = b$$

- If $\lambda_n/n \to 0$ then this is really a statement about estimating W at rate λ_n^{-1}.
Newman Girvan (NG)

- Let $\Delta = R - \pi^D$

$$\mathcal{E} = P - (\pi^T P \pi)^{-1} P \pi \pi^T P$$

$$G_N(\Delta) = \text{trace}(\Delta \mathcal{E} \Delta^T + \Delta \mathcal{E} \pi^D + \pi^D \mathcal{E} \Delta^T).$$

- C2 for NG $\equiv G_N(\Delta)$ uniquely maximized by $\Delta = 0$ on

$$\{\Delta : \Delta^T 1 = 0, \Delta_{ab} \geq 0, a \neq b\}.$$
Result

1) NG satisfies C2, C3 if \mathcal{E} has all diagonal entries positive and all nondiagonal entries negative.

2) But C2, C3 and consistency may fail.
Newman-Girvan NG: counter examples

$K = 3, \pi = (0.6, 0.1, 0.3)$ and

$$P = \begin{bmatrix}
0.8 & 0.1 & 0.3 \\
0.1 & 0.7 & 0.6 \\
0.3 & 0.6 & 0.9
\end{bmatrix}$$

With true labeling, NG modularity approaches 0.10. However, the true maximum modularity, equal 0.12, is achieved by merging the last two communities.
If U_1, \ldots, U_m are independent, $EU_j = 0$, $|U_j| \leq 1$, $1 \leq j \leq m$, $S_m = \sum_{j=1}^{m} U_j$, then

\[
\frac{1}{m} \log P \left[\left| \frac{S_m}{m} \right| \geq c \right] \sim \rho < 0,
\]

\[
P \left[\left| \frac{S_m}{m} \right| \geq t \right] \leq Ce^{-m\frac{t^2}{2}}, \quad \frac{t}{\sqrt{m}} \to \infty,
\]

\[
\max_{1 \leq l \leq L} \left| \frac{S_{ml}}{m} \right| = O_P \left(\sqrt{\log L} \right) = o_P(1)
\]

if $L \sim K^{\sqrt{m}}$

In our case $m \sim n^2 \sim \# \text{ of edges}$.

\[
L = 2^n.
\]
Profile Likelihood

\[F(R) = \sum_{k<l} (R11^T R^T)_{kl} \tau \left(\frac{(RPR^T)_{kl}}{(R11^T R^T)_{kl}} \right) \]
\[+ \sum_{1 \leq k \leq K} \frac{1}{2} (R11^T R^T)_{kk} \tau \left(\frac{(RPR^T)_{kk}}{(R11^T R^T)_{kk}} \right) \]
Simulation

Fig. 3 Compare NG, spectral clustering and profile likelihood with $K = 3$.
Real Data: Private Branch Exchange

Fig. 4 Different communities formed by NG and profile likelihood

Quicker Optimal Approach

1. Estimate

\[\hat{P}(n) = P(n) + O_P(n^{-1}) \]
\[\hat{\pi} = \pi + O_P(n^{-1/2}) \]

by MOM, using degree, triangles, etc.

2. Let

\[\hat{f}_i(k, A) \propto P[c_i = k|A, \hat{P}, \hat{\lambda}] \]
\[\hat{c}_i = \arg\max \hat{f}_i(k, A). \]

3. Computing \(\hat{f}_i \)

Simulate \(\mathbf{c}_s = (c_{s1}, \ldots, c_{sn})^T \), \(s = 1, \ldots, S \). \(c_{si} \) iid \(\mathcal{M}(1, \hat{\pi}) \), \(i = 1, \ldots, n. \)
\[\hat{f}_{is}(k, A) = \prod_{a \leq b} \hat{P}_{ab}^{O_{abs}^{i,k}} (1 - \hat{P}_{ab})^{n_{abs}^{i,k}} - O_{abs}^{i,k} \]

\[\hat{f}_i(k, A) = \frac{1}{S} \sum_{s=1}^{S} \hat{\pi}_k \hat{f}_{is}(k, A) \]
\(O_{ab}^{-i,k} = \sum_{r,t} A_{rt} \left(1 - \frac{\delta_{ab}}{2} \right) \mathbf{1}(c_{sr}^{-i,k} = a, c_{st}^{-i,k} = b) \)

\(n_{ab}^{-i,k} = n_{as}^{-i,k} n_{bs}^{-i,k} \), \quad a \neq b

\(= \left(n_{as}^{-i,k} \right)^2, \quad a = b \)

\(n_{as}^{-i,k} = \sum_{j=1}^{n} \mathbf{1}(c_{sj}^{-i,k} = a) \)

\(c_{sj}^{-i,k} = c_{sj}, \quad j \neq i \)

\(= k, \quad j = i \)
Discussion

1. The problem of $\lambda_n = n$ is easy. Given \hat{c}, estimation of P, π is easy. Just count.

2. Framework lends itself to generalization as in ordinary statistics.
 Introduce covariates $\{Z_i\}$ or $\{Z_{ij}\}$. Eg, location, # of telephone calls per week between i and j.

3. Generalization to directed case based on characterization.
 \[X_{ij} \neq X_{ji} \leftrightarrow g(w, u, v, z) \text{ not necessarily symmetric in } (u, v) \]
 \[\tilde{X}_{ij} \equiv X_{ij} + X_{ji} \]
 Estimate directions after communities. Fit undirected graph.

4. Nonparametric theory.
 Estimate affinity function $h_{\text{CAN}}(u, v)$.