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SVM Training as an
Optimization Problem

• IP method on dual (standard QP solver):
O(n3.5 log log(1/ε))

• Dual decomposition methods (e.g. SMO):
O(n2 d log(1/ε)) [Platt 98][Joachims 98][Lin 02]

• Primal cutting plane method (SVMperf):
O( nd / (λε) ) [Joachims 06][Smola et al 08]

Runtime to get f(w) ≤ min f(w) + ε



More Data ⇒ More Work?
10k training examples 1 hour 2.3% error

(when using
the predictor)

1M training examples 1 week (or more…) 2.29% error

10 minutes 2.3% error

But I really care about that 0.01% gain

Can always sample and get same runtime:

Can we leverage the excess data to reduce runtime?

1 hour 2.3% error

Study runtime increase as a function of target accuracy

Study runtime increase as a function of problem difficulty (e.g. small margin)

My problem is so hard, I have to crunch 1M examples



SVM Training

• Optimization objective:

• True objective: prediction error on future examples
err(w) = Ex,y[error of w’x vs. y] ≈ E[ [1-y〈w,x〉]+ ]

• Would like to understand computational cost in terms of:
• Increasing function of:

– Desired generalization performance (i.e. as err(w) decreases)
– Hardness of problem:

margin, noise (unavoidable error)

• Decreasing function of available data set size



Error Decomposition

• Approximation error:
– Best error achievable by large-margin predictor
– Error of population minimizer

w0 = argmin E[f(w)] = argmin λ|w|2 + E[loss(w)]

• Estimation error:
– Extra error due to replacing E[loss] with empirical loss

w* = arg min fn(w) = arg min λ |w|2 + loss(w on training set)

• Optimization error:
– Extra error due to only optimizing to within finite precision

err(w0)

err(w*)

err(w)
Prediction error



The Double-Edged Sword

• When data set size increases:
– Estimation error decreases
– Can increase optimization error,

i.e. optimize to within lesser accuracy ⇒ fewer iterations
– But handling more data is expensive

e.g. runtime of each iteration increases

• PEGASOS (Primal Efficient Sub-Gradient Solver for SVMs) 
[Shalev-Shwartz Singer S 07]

– Fixed runtime per iteration
– Runtime to get fixed accuracy does not increase with n

err(w0)

err(w*)

err(w)

data set size (n)

Error Decomposition
Prediction error



PEGASOS: Stochastic (sub-)Gradient Descent

• Initialize w=0

• At each iteration t,
with random data point (xi,yi):

subgradient of
λ|w|2+[1-yi<w,xi>]+

• Theorem: After at most               iterations, f(wPEGASOS) ≤ minw f(w)+ε,
with probability ≥ 1-δ

• With d-dimensional (or d-sparse) features, each iteration takes time O(d)

• Conclusion: Run-time required for PEGASOS to find ε accurate solution with 
constant probability:

• Run-time does not depend on #examples



Training Time (in seconds)

8052
Physics ArXiv
(62k examples, 
100k features)

25,514856
Covertype
(581k examples, 
54 features)

20,075772
Reuters CCAT 
(800K examples, 
47k features)

SVM-Light 
[Joachims]

SVM-Perf
[Joachims06]

Pegasos



Runtime Analyzis

If there is some predictor w0 with low |w0| and low err(w0),
how much time to find predictor with err(w) ≤ err(w0)+ε

large margin M=1/|w0|

Data Laden analysis: Restricted by computation, not data

λ = O(ε/|w0|2)
εacc = O(ε)
n = Ω(1/(λ ε)) = Ω(|w0|2/ε2)

Traditional Data Laden:
f(w)<f(w*)+εacc err(w)≤ err(w0)+ε

Interior Point n3.5 log(log(1/εεεεacc)) |w0|
7/ε7

SMO n2 d log(1/εεεεacc) d |w0|
4/ε4

SVMPerf n d / (λλλλ εεεεacc) d |w0|
4/ε4

PEGASOS d / (λλλλ εεεεacc) d |w0|
2/ε2

Unlimited data available, can 
choose working data-set size

To get err(w) ≤ err(w0)+O(ε):

(ignoring log-factors)



Dependence on Data Set Size

Training set Size
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PEGASOS guaranteed 
runtime to get error err(w0)+ε
with n training points:

Target error
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Dependence on Data Set Size
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Dependence on Data Set Size

Training set Size
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err(w) ≤ err(w0) + λ|w0|2 + O(1/(λn)) + O(d/(λT))

Increase λ as training size increases!
More regularization, less predictors allowed
Larger approximation error err(w0)+λ|w0|2

Faster runtime T ∝ 1/λ
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Dependence on Data Set Size:
Traditional Optimization Approaches
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Beyond PEGASOS

• Other machine learning problems
– Kernalizes SVMs
– L1-regularization, e.g. LASSO
– Matrix/factor models (e.g. with trace-norm regularization)
– Multilayer / deep networks
…

• Can we more explicitly leverage excess data?
– Playing only on the error decomposition,

const × minimum-sample-complexity is enough to get to 
const × minimum-data-laden-runtime



Clustering
(by fitting a Gaussian mixture model)

•Find centers (µ1,…,µk) minimizing objective:
–Negative log-likelihood under Gaussian mixture model:

-Σi log( Σj exp -(xi-µj)2/2 )
–k-means objective ≈ negative log-likelihood of assignment:

Σi minj (xi-µj)2



Clustering
(by fitting a Gaussian mixture model)

• Clustering is hard in the worst-case
• Given LOTS of data and HUGE separation:

– Can efficiently recover true clustering
[Dasgupta 99][Dasgupta Schulman 00][Arora Kannan 01][Vempala Wang 04] 
[Achliopts McSherry 05][Kannan Salmasian Vempala 05]

– EM works (empirically)

• With too little data, clustering is meaningless:
– Even if we find the ML clustering, it has nothing to do with 

underlying distribution

“Clustering isn’t hard—
it’s either easy, or not interesting”



Effect of “Signal Strength”

Not enough data—
“optimal” solution is 
meaningless.

Lots of data—
true solution creates 
distinct peak.
Easy to find.

Just enough data—
optimal solution is 
meaningful, but hard to 
find?

~Informational
limit

Computational
limit ~

Larger data set

Smaller data set
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Dependence on the
cluster separation
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Conclusions from Empirical Study

• With enough samples, EM does find global ML, even with 
low separation

• There is an informational cost to tractability
(at least when using known methods)

• Cost of tractability: PCA+EM+pruning (best known method) 
may require about s2 as much data as what is statistically 
necessary

• Cost increases when separation increases



Hardness as a Function of 
Dataset Size
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Hardness as a Function of 
Dataset Size

n
dataset size

“not interesting”—
optimum does not 

correspond to true solution provable polytime

EM**
empirically
polytime

polytime
hard: provably no 
polytime algorithm



Informational Cost of Tractability?

• Gaussian Mixture Clustering
• Learning structure of dependency networks

– Hard to find optimal (ML) structure in the worst case [Srebro 01]

– Polynomial-time algorithms for the large-sample limit [Chechetka
Guestrin 07]

• Graph partitioning (correlation clustering)
– Hard in the worst case
– Easy for large graphs with a “nice” partitions [McSherry 03]

• Finding cliques in random graphs
• Planted Noisy MAX-SAT



• Required runtime:
– increases with complexity of the answer (separation, decision boundary)

– increases with desired accuracy

– decreases with amount of available data
• PEGASOS (stochastic sub-gradient descent for SVMs):

– Runtime to get fixed optimization accuracy doesn’t depend on n
→ Best performance in data-laden regime
→ Runtime decreases as more data is available

• Clustering

– Past informational limit, extra data is needed to make problem tractable
– Cost of tractability increases quadratic with cluster seperation

More Data ⇒ Less Work
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