The MOVIMOS Multimedia Search Engine

Thomas M. Breuel
DFKI & U. Kaiserslautern
MOVIMOS
User Interfaces

E.g.: Navidgator: similarity-based hierarchical navigation through image/video query results
MOVIMOS target applications

- InViRe, TagMyDuck, OCRosearch, ...

- driven by IUPR applications
 - camera-based search for mobile phones
 - mobile augmented reality
 - image/video search engines
 - digital forensics
 - automated pornography filtering
 - book and OCR search
Retrieval Systems

- First image DB system at MIT (1980)
- IBM QBIC (1995), multidim. indexing, closed source
- Viper/GIFT (1999), open source, large hw-requ.
- PicSOM (2002), SOM-based index, not available
- Cortina (2004), scales > 1 mio imgs, not available
- INRIA LEAR group (2004 ...)
- IUPR group (2004 ...)
- FIRE (2005), open source, monolithic architecture

... and many more
history

- fast, parallel model-based indexing (1989)
- appearance-based 3D recognition (1992)
- QBIC (1995)
- personalized web search (1998)
- TagMyDuck, MOVIMOS ... (2004-)
- OCRopus (2006-)
MOVIMOS technical goals

- **architectural**
 - full multimedia support
 - easy extensibility (new features, searches)
 - dynamic database updates
 - scalability (fast indexing + distribution)

- **functional**
 - standard CBIR functions
 - tagging and categorization
 - semi-supervised learning
 - context dependent search
 - personalized search
architectural
MOVIMOS multimedia support

- content types
 - images
 - video
 - audio
 - text
 - lattices

- resulting application requirements
 - open-ended set of format, features, algorithms
 - very data intensive: distributed storage and modeling
 - result integration, context modeling
MOVIMOS extensibility

- **tools, architecture**
 - Python as glue code ("component architecture")
 - prototyping in NumPy/SciPy (≈ Matlab)
 - easy access to native code for speed
 - CherryPy, REST for distribution / services

- **functionality**
 - standard CBIR primitives, operators (faces, porn, ...)
 - new IUPR functionality (context, adaptation, relevance, ...)
 - text, OCR plugins
MOVIMOS scalability

- **fast indexing at each node**
 - index data structure + sublinear lookup
 - e.g.: bit vectors, inverted indexes
 - supported at MOVIMOS nodes
 - optional distributed index creation

- **distributed search**
 - motivation: some similarity measures hard to speed up
 - e.g.: geometric match verification, context-dependent simil.
 - supported between MOVIMOS nodes
 - support for multiple topologies
 - simple REST-based APIs
single node configuration

Browser

Desktop Client

similarity measure
similarity measure
similarity measure
P2P configuration
technology
automated tagging / categorization

- **goal**
 - assign descriptive tags to images / videos

- **applications**
 - search / categorization / personalized content delivery

- **challenges**
 - visual diversity of tags
 - many thousands of categories
 - lack of training data
 - context/user dependence
automated tagging / categorization

- **common approach**
 - build corpora, then train

- **our approach**
 - autonomous learning from the web (YouTube, Flickr)
 - using web tags as (noisy) ground truth
semi-supervised visual learning

- **challenges**
 - web tags are coarse, unreliable, and subjective
 - web datasets contain “non-relevant” parts (noise)
 - training automatic taggers on this material is difficult
semi-supervised learning II

- **approach**
 - filter non-relevant content as outliers during training
 - model distributions of relevant and non-relevant content
 - parameterized kernel density estimators
 - $\beta_i = \text{feature } i \text{ is relevant}$

\[
p_{\beta}^{1}(x) = \frac{1}{Z} \cdot \sum_{i=1}^{n} \beta_i \cdot K_h(x; x_i),
\]

\[
p_{\beta}^{0}(x) = \frac{1}{Z'} \cdot \sum_{i=1}^{n} (1 - \beta_i) \cdot K_h(x; x_i),
\]
semi-supervised learning III

- automatically disregards irrelevant content
- improves tagging / categorization
- additional approach: motion segmentation
style / context / user adaptation

• picture context / style
 • pictures taken over the same trip / event
 • pictures taken by the same user
 • video frames from the same show / movie
 • users tag differently
 • queries have different objectives

• solution
 • adapt classifiers to context / style
style modeling

- style modeling
 - previously used in OCR / handwriting recognition

- application to image tagging
 - extend image annotation with a latent style variable
 - tags t, visual words v, style s
 - improves tagging significantly
 - best result to date on COREL-5K benchmark

\[
P(t|d, s) = \sum_{z \in Z} P(t|z, s) \cdot P(z|d)
\]

\[
P(v|d, s) = \sum_{z \in Z} P(v|z, s) \cdot P(z|d)
\]
summary
MOVIMOS

- new, flexible, distributed platform
 - images, video, text, lattices
 - standard CBIR, VQ, indexing, matching, verification

- state-of-the-art technologies, e.g.
 - categorization, tagging, retrieval
 - context, style modeling
 - semi-supervised learning

- research platform
 - open standards (Python, NumPy, REST, etc.)
 - open source release planned for Fall 2009
papers, demos, links

www.iupr.com