Welcome to 3.091

Lecture 30

November 24, 2004

TABLE BIO.1 The 20 Standard Amino Acids

Nante	Structure (at neutral pH)	Name	Structure (at neutral pH)	
Nonpolar (Hydrophobic) R Groups H		Polar (Hydrophilic) R Groups CH ₂ OH		
Glycine (Gly)	H_3N^+ $ CH$ $ CO_2^-$	Serine (Ser)	H ₃ N ⁺ -CH-CO ₂	
Alanine (Ala)	CH ₃ H ₂ N ⁺ −CH−CO ₂ ⁻ CH ₃ CH ₃	Threonine (Thr)	CH ₃ OH CH H ₃ N ⁺ −CH−CO ₂ [−] OH	
Valine (Val)	H ₃ N ⁺ -CH ₋ CO ₂ -CH ₃		CH ₂	
Leucine (Leu)	CH_2 H_3N^+ $-CH$ $-CO_2^-$	Tyrosine (Tyr)	H ₃ N' —CH—CO ₂ — CH ₂ SH	
	CH ₃ CH ₂ CH ₃	Cysteine (Cys)	H ₃ N ⁺ -CH-CO ₂ -	
Isoleucine (He)	H_3N^+ — CH — CO_2^- H_2C — CH_2		O - -	
Proline (Pro)	H CO ₂	Asparagine (Asn)	H_3N^+ — CH — CO_2^- Q	
	CH ₃ S CH ₂		C−NH₂ CH₂ CH₂	
	CH ₂	Glutamine (Gln)	H_3N^* — CH — CO_2^-	
Methionine (Met)	$H_3N^*-CH-CO_2$	Negatively C	Negatively Charged R Groups	
	CH ₂	Asparlic acid (Asp)	CO_{2}^{-} CH_{2} CH_{2} $H_{3}N^{+}-CH-CO_{2}^{-}$	
Phenylalanine (Phe)	H ₃ N*-CH-CO ₂ -	, (2 mb)		
	N-H	Glutamic acid (Glu)	CO ₂ ⁻ CH ₂ 1 CH ₂ H ₃ N ⁺ —CH—CO ₂ ⁻	
Tryptophan (Trp)	H_3N^{-} $-CH-CO_2^{-}$		(continued	

Name	Structure (at neutral pH)	Name	Structure (at neutral pH)
Positively Charged R Groups		Positively Charged R Groups	
	NH_2		NH_3^+
	$\stackrel{1}{\text{C}}=NH_2^+$		ĊH ₂
	ŅН		$\dot{\text{CH}}_2$
	$\overset{1}{C}H_2$		CH ₂
	ĊH ₂		ĊH ₂
	ĊH ₂	Lysine (Lys)	H_3N^+ $-CH$ $-CO_2^-$
Arginine (Arg)	H_3N^+ — CH — CO_2^-		Н
			H $+N$ CH_2 H
		Histidine (His)	H_3N^+ — CH — CO_2^-

a Ocone, q chiral species 3 path length Through Same

extreme kinetics: the Halifax Explosion

- * Thursday, December 6, 1917
- * Imo, Belgian, relief ship
- * *Mont Blanc*, French, supply ship:

 35 tons benzol

 300 rounds ammunition
 - 10 tons gun cotton
 - 2,300 tons picric acid (used in explosives)
 - 20,000 tons TNT ♠%♠%♠%♠%♠%♠%
- * at 8:45 a.m. *Imo* hits *Mont Blanc*, missing TNT, striking picric acid stored directly beneath drums of benzol on deck, sparks