Welcome to 3.091 Lecture 30 November 24, 2004 TABLE BIO.1 The 20 Standard Amino Acids | Nante | Structure (at neutral pH) | Name | Structure (at neutral pH) | | |--------------------------------------|--|--|---|--| | Nonpolar (Hydrophobic) R Groups
H | | Polar (Hydrophilic) R Groups
CH ₂ OH | | | | Glycine (Gly) | H_3N^+ $ CH$ $ CO_2^-$ | Serine (Ser) | H ₃ N ⁺ -CH-CO ₂ | | | Alanine (Ala) | CH ₃
H ₂ N ⁺ −CH−CO ₂ ⁻
CH ₃ CH ₃ | Threonine (Thr) | CH ₃ OH
CH
H ₃ N ⁺ −CH−CO ₂ [−]
OH | | | Valine (Val) | H ₃ N ⁺ -CH ₋ CO ₂ -CH ₃ | | CH ₂ | | | Leucine (Leu) | CH_2
H_3N^+ $-CH$ $-CO_2^-$ | Tyrosine (Tyr) | H ₃ N' —CH—CO ₂ —
CH ₂ SH | | | | CH ₃ CH ₂ CH ₃ | Cysteine (Cys) | H ₃ N ⁺ -CH-CO ₂ - | | | Isoleucine (He) | H_3N^+ — CH — CO_2^-
H_2C — CH_2 | | O

 -
 - | | | Proline (Pro) | H CO ₂ | Asparagine (Asn) | H_3N^+ — CH — CO_2^-
Q | | | | CH ₃

 S
 CH ₂ | | C−NH₂
CH₂
CH₂ | | | | CH ₂ | Glutamine (Gln) | H_3N^* — CH — CO_2^- | | | Methionine (Met) | $H_3N^*-CH-CO_2$ | Negatively C | Negatively Charged R Groups | | | | CH ₂ | Asparlic acid (Asp) | CO_{2}^{-} CH_{2} CH_{2} $H_{3}N^{+}-CH-CO_{2}^{-}$ | | | Phenylalanine (Phe) | H ₃ N*-CH-CO ₂ - | , (2 mb) | | | | | N-H | Glutamic acid (Glu) | CO ₂ ⁻
CH ₂
1
CH ₂
H ₃ N ⁺ —CH—CO ₂ ⁻ | | | Tryptophan (Trp) | H_3N^{-} $-CH-CO_2^{-}$ | | (continued | | | Name | Structure (at neutral pH) | Name | Structure (at neutral pH) | |-----------------------------|---------------------------------|-----------------------------|----------------------------| | Positively Charged R Groups | | Positively Charged R Groups | | | | NH_2 | | NH_3^+ | | | $\stackrel{1}{\text{C}}=NH_2^+$ | | ĊH ₂ | | | ŅН | | $\dot{\text{CH}}_2$ | | | $\overset{1}{C}H_2$ | | CH ₂ | | | ĊH ₂ | | ĊH ₂ | | | ĊH ₂ | Lysine (Lys) | H_3N^+ $-CH$ $-CO_2^-$ | | Arginine (Arg) | H_3N^+ — CH — CO_2^- | | Н | | | | | H $+N$ CH_2 H | | | | Histidine (His) | H_3N^+ — CH — CO_2^- | a Ocone, q chiral species 3 path length Through Same ## extreme kinetics: the Halifax Explosion - * Thursday, December 6, 1917 - * Imo, Belgian, relief ship - * *Mont Blanc*, French, supply ship: 35 tons benzol 300 rounds ammunition - 10 tons gun cotton - 2,300 tons picric acid (used in explosives) - 20,000 tons TNT ♠%♠%♠%♠%♠%♠% - * at 8:45 a.m. *Imo* hits *Mont Blanc*, missing TNT, striking picric acid stored directly beneath drums of benzol on deck, sparks