Advanced Statistical Learning Theory

Olivier Bousquet
Pertinence
32, rue des Jeûneurs
F-75002 Paris, France
olivier.bousquet@pertinence.com

Machine Learning Summer School, September 2004
Roadmap

- **Lecture 1**: Union bounds and PAC Bayesian techniques
- **Lecture 2**: Variance and Local Rademacher Averages
- **Lecture 3**: Loss Functions
- **Lecture 4**: Applications to SVM
Lecture 1

Union Bounds and PAC-Bayesian Techniques

- Binary classification problem
- Union bound with a prior
- Randomized Classification
- Refined union bounds
Probabilistic Model

We consider an input space \mathcal{X} and output space \mathcal{Y}. Here: classification case $\mathcal{Y} = \{-1, 1\}$.

Assumption: The pairs $(X, Y) \in \mathcal{X} \times \mathcal{Y}$ are distributed according to P (unknown).

Data: We observe a sequence of n i.i.d. pairs (X_i, Y_i) sampled according to P.

Goal: construct a function $g : \mathcal{X} \rightarrow \mathcal{Y}$ which predicts Y from X, i.e. with low risk

$$R(g) = P(g(X) \neq Y) = \mathbb{E} \left[1_{\{g(X) \neq Y\}} \right]$$
Probabilistic Model

Issues

- \(P \) is unknown so that we cannot directly measure the risk
- Can only measure the agreement on the data
- **Empirical Risk**

\[
R_n(g) = \frac{1}{n} \sum_{i=1}^{n} 1[g(X_i) \neq Y_i]
\]
Bounds (1)

A learning algorithm

- Takes as input the data \((X_1, Y_1), \ldots, (X_n, Y_n)\)
- Produces a function \(g_n\)

Can we estimate the risk of \(g_n\)?

\[\Rightarrow\] random quantity (depends on the data).

\[\Rightarrow\] need probabilistic bounds
Bounds (2)

- Error bounds
 \[R(g_n) \leq R_n(g_n) + B \]
 \(\Rightarrow \) Estimation from an empirical quantity

- Relative error bounds
 - Best in a class
 \[R(g_n) \leq R(g^*) + B \]
 - Bayes risk
 \[R(g_n) \leq R^* + B \]
 \(\Rightarrow \) Theoretical guarantees
Notation

Important: to simplify writing we use the notation:

- \(Z = (X, Y) \)
- \(\mathcal{G} \): hypothesis class, \(g \) function from \(\mathcal{X} \) to \(\mathbb{R} \)
- \(\mathcal{F} \): loss class or centered loss class, \(f \) function from \(\mathcal{X} \times \mathcal{Y} \) to \(\mathbb{R} \)

\[
f(z) = f((x, y)) = \ell(g(x), y) \quad \text{or} \quad \ell(g(x), y) - \ell(g^*(x), y)
\]

Simplest case \(\ell(g(x), y) = 1_{[g(x)\neq y]} \)

- \(R(g) = Pf := \mathbb{E}[f(X, Y)] \), \(R_n(g) = P_nf := \frac{1}{n} \sum_{i=1}^{n} f(Z_i) \)
Take Home Messages

- Two ingredients of bounds: deviations and union bound
- Optimal union bound with metric structure of the function space
- Can introduce a prior into the union bound
- PAC-Bayesian technique: improves the bound when averaged
Deviations

Hoeffding’s inequality

for each fixed $f \in \mathcal{F}$, with probability at least $1 - \delta$,

$$P f - P_n f \leq C \sqrt{\frac{\log \frac{1}{\delta}}{n}}.$$ (1)
Finite union bound

For a finite set of functions \mathcal{F} with probability at least $1 - \delta$,

$$ \forall f \in \mathcal{F}, \ P_f - P_n f \leq C \sqrt{\frac{\log |\mathcal{F}| + \log \frac{1}{\delta}}{n}}. \quad (2) $$

- $\log |\mathcal{F}|$ is analogue to a variance
- extra variability from the unknown choice
- measures the size of the class
Weighted union bound

Introduce a probability distribution π over \mathcal{F}: with probability at least $1 - \delta$,

$$\forall f \in \mathcal{F}, \ P f - P_n f \leq C \sqrt{\log \frac{1}{\pi(f)} + \log \frac{1}{\delta}}. \tag{3}$$

- the bound depends on the actual function f being considered
- capacity term could be small if π appropriate
- However, π has to be chosen before seeing the data
Comments

• π is just a technical prior

• allows to distribute the cost of not knowing f beforehand

• if one is lucky, the bound looks like Hoeffding

• goal: guess how likely each function is to be chosen
Randomized Classifiers

Given \mathcal{G} a class of functions

- **Deterministic**: picks a function g_n and always use it to predict
- **Randomized**
 - construct a distribution ρ_n over \mathcal{G}
 - for each instance to classify, pick $g \sim \rho_n$
- **Error is averaged over ρ_n**

\[
R(\rho_n) = \rho_n P f
\]

\[
R_n(\rho_n) = \rho_n P_n f
\]
Union Bound (1)

Let π be a (fixed) distribution over \mathcal{F}.

- Recall the refined union bound

$$\forall f \in \mathcal{F}, \ P f - P_n f \leq \sqrt{\frac{\log \frac{1}{\pi(f)} + \log \frac{1}{\delta}}{2n}}$$

- Take expectation with respect to ρ_n

$$\rho_n P f - \rho_n P_n f \leq \rho_n \sqrt{\frac{\log \frac{1}{\pi(f)} + \log \frac{1}{\delta}}{2n}}$$
Union Bound (2)

\[\rho_n P f - \rho_n P_n f \leq \rho_n \sqrt{\left(- \log \pi(f) + \log \frac{1}{\delta} \right) / (2n)} \]

\[\leq \sqrt{\left(- \rho_n \log \pi(f) + \log \frac{1}{\delta} \right) / (2n)} \]

\[\leq \sqrt{\left(K(\rho_n, \pi) + H(\rho_n) + \log \frac{1}{\delta} \right) / (2n)} \]

- \(K(\rho_n, \pi) = \int \rho_n(f) \log \frac{\rho_n(f)}{\pi(f)} df \) Kullback-Leibler divergence
- \(H(\rho_n) = \int \rho_n(f) \log \rho_n(f) df \) Entropy
PAC-Bayesian Refinement

• It is possible to improve the previous bound.

• With probability at least $1 - \delta$,

$$\rho_n P f - \rho_n P_n f \leq \sqrt{\frac{K(\rho_n, \pi) + \log 4n + \log \frac{1}{\delta}}{2n - 1}}$$

• Good if ρ_n is spread (i.e. large entropy)

• Not interesting if $\rho_n = \delta_{f_n}$
Proof (1)

- Variational formulation of entropy: for any T

$$\rho T(f) \leq \log \pi e^{T(f)} + K(\rho, \pi)$$

- Apply it to $\lambda(P f - P_n f)^2$

$$\lambda \rho_n (P f - P_n f)^2 \leq \log \pi e^{\lambda(P f - P_n f)^2} + K(\rho_n, \pi)$$

- Markov’s inequality: with probability $1 - \delta$,

$$\lambda \rho_n (P f - P_n f)^2 \leq \log \mathbb{E} \left[\pi e^{\lambda(P f - P_n f)^2} \right] + K(\rho_n, \pi) + \log \frac{1}{\delta}$$
Proof (2)

- Fubini
 \[\mathbb{E} \left[\pi e^{\lambda (Pf - Pnf)^2} \right] = \pi \mathbb{E} \left[e^{\lambda (Pf - Pnf)^2} \right] \]

- Modified Chernoff bound
 \[\mathbb{E} \left[e^{(2n-1)(Pf - Pnf)^2} \right] \leq 4n \]

- Putting together (\(\lambda = 2n - 1 \))
 \[
 (2n - 1) \rho_n (Pf - Pnf)^2 \leq K(\rho_n, \pi) + \log 4n + \log \frac{1}{\delta}
 \]

- Jensen
 \[
 (2n - 1)(\rho_n(Pf - Pnf))^2 \leq (2n - 1)\rho_n(Pf - Pnf)^2
 \]
Other refinements

- Symmetrization
- Transductive priors
- Rademacher averages
- Chaining
- Generic chaining
Symmetrization

When functions have range in \{0, 1\}, introduce a ghost sample \(Z'_1, \ldots, Z'_n\). Then the set
\(S_n = \{ f(Z_1), \ldots, f(Z_n), f(Z'_1), \ldots, f(Z'_n) : f \in \mathcal{F} \}\) is finite.

With probability at least \(1 - \delta\), \(\forall f \in \mathcal{F}\)
\[
P f - P_n f \leq C \sqrt{\frac{\log \mathbb{E}|S_n| + \log \frac{1}{\delta}}{n}}. \tag{4}
\]

- Finite union bound applies to infinite case
- computing \(\mathbb{E}|S_n|\) impossible in general
- need combinatorial parameters (e.g. VC dimension)
Transductive priors

If one defines a function $\Pi : \mathbb{Z}^{2n} \rightarrow \mathcal{M}_1^+(\mathcal{F})$ which is exchangeable, with probability at least $1 - \delta$ (over the random choice of a double sample), for all $f \in \mathcal{F}$,

$$P'_n f - P_n f \leq C \sqrt{\frac{\log 1/\Pi(Z_1, \ldots, Z_n, Z'_1, \ldots, Z'_n)(f)}{n} + \log \frac{1}{\delta}}$$

- Allows the prior to depend on the (double) sample
- Can be useful when there exists a data-independent upper bound
Rademacher averages

No Union Bound

Recall that with probability at least $1 - \delta$, for all $f \in \mathcal{F}$

$$P f - P_n f \leq C \left(\frac{1}{n} \mathbb{E}_n \mathbb{E}_\sigma \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} \sigma_i f(Z_i) + \sqrt{\frac{\log \frac{1}{\delta}}{n}} \right)$$

- No union bound used at this stage, only deviations
- Union bound needed to upper bound the r.h.s.
- Finite case : $\sqrt{\log |\mathcal{F}|/n}$
Chaining

Global Metric Structure

Consider finite covers of the set of function at different scales. Construct a chain of functions that approximate a given function more and more closely. With probability at least $1 - \delta$, for all $f \in \mathcal{F}$

$$P f - P_n f \leq C \left(\frac{1}{\sqrt{n}} \mathbb{E}_n \int_0^\infty \sqrt{\log N(\mathcal{F}, \epsilon, d_n)} d\epsilon + \sqrt{\frac{\log \frac{1}{\delta}}{n}} \right)$$

with d_n empirical L_2 metric
Generic chaining

Local Metric Structure

Let $r > 0$ and $(\mathcal{A}_j)_{j \geq 1}$ be partitions of \mathcal{F} of diameter r^{-j} w.r.t. the distance d_n such that \mathcal{A}_{j+1} refines \mathcal{A}_j. Previous integral replaced by

$$\inf_{\forall j, \pi(j) \in \mathcal{M}^+} \sup_{f \in \mathcal{F}} \sum_{j=1}^{\infty} r^{-j} \sqrt{\log[1/\pi(j) A_j(f)]}$$

- Better adaptation to the local structure of the space
- Equivalent to the Rademacher average (up to log)
Take Home Messages

- Two ingredients of bounds: deviations and union bound \Rightarrow next lecture improves the deviations

- Optimal union bound with metric structure of the function space \Rightarrow generic chaining

- Can introduce a prior into the union bound \Rightarrow best prior depends on the algorithm

- PAC-Bayesian technique: improves the bound when averaged \Rightarrow can be combined with generic chaining
Lecture 2

Variance and Local Rademacher Averages

- Relative error bounds
- Noise conditions
- Localized Rademacher averages
Take Home Messages

• Deviations depend on the variance

• No noise means better rate of convergence

• Noise can be related to variance

• Rademacher averages can be improved with variance
Binomial tails

- $P_n f \sim B(p, n)$ binomial distribution $p = P_f$
- $\mathbb{P}[P_f - P_n f \geq t] = \sum_{k=0}^{\lfloor n(p-t) \rfloor} \binom{n}{k} p^k (1 - p)^{n-k}$
- Can be upper bounded
 - Exponential $\left(\frac{1-p}{1-p-t} \right)^n (1-p-t) \left(\frac{p}{p+t} \right)^{n(p+t)}$
 - Bennett $e^{-\frac{np}{1-p}((1-t/p) \log(1-t/p)+t/p)}$
 - Bernstein $e^{-\frac{nt^2}{2p(1-p)+2t/3}}$
 - Hoeffding e^{-2nt^2}
Tail behavior

• For small deviations, Gaussian behavior $\approx \exp\left(-\frac{nt^2}{2p(1-p)}\right)$
 \Rightarrow Gaussian with variance $p(1-p)$

• For large deviations, Poisson behavior $\approx \exp\left(-\frac{3nt}{2}\right)$
 \Rightarrow Tails heavier than Gaussian

• Can upper bound with a Gaussian with large (maximum) variance $\exp\left(-2nt^2\right)$
Illustration (1)

Maximum variance \((p = 0.5)\)
Illustration (2)

Small variance ($p = 0.1$)
Taking the variance into account (1)

- Each function \(f \in \mathcal{F} \) has a different variance \(Pf(1 - Pf) \leq Pf \).
- For each \(f \in \mathcal{F} \), by Bernstein’s inequality

\[
Pf \leq P_{nf} + \sqrt{\frac{2Pf \log \frac{1}{\delta}}{n}} + \frac{2 \log \frac{1}{\delta}}{3n}
\]

- The Gaussian part dominates (for \(Pf \) not too small, or \(n \) large enough), it depends on \(Pf \)

\[\Rightarrow \text{Better bound when } Pf \text{ is small} \]
Taking the variance into account (2)

- Square root trick:

\[x \leq A\sqrt{x} + B \implies x \leq A^2 + B + \sqrt{BA} \leq 2A^2 + 2B \]

- Consequence

\[Pf \leq 2P_n f + C \frac{\log \frac{1}{\delta}}{n}. \]

⇒ Better bound when \(P_n f \) is small
Normalization

- Previous approach was to upper bound

\[\sup_{f \in \mathcal{F}} Pf - P_n f \]

The supremum is reached at functions with large variance. Those are not the interesting ones.

- Here \((f \in \{0, 1\}) \), \(\text{Var}[f] \leq Pf^2 = Pf \)

- Focus of learning: functions with small error \(Pf \) (hence small variance)

- Large variance \(\Rightarrow \) large risk
Normalization

- The idea is to normalize functions by their variance
- After normalization, fluctuations are more "uniform"

\[
\sup_{f \in \mathcal{F}} \frac{Pf - P_{n}f}{\sqrt{Pf}}
\]

All functions on the same scale

⇒ The normalized supremum takes the learning method into account.
Relative deviations

Vapnik-Chervonenkis 1974
For $\delta > 0$ with probability at least $1 - \delta$,

$$\forall f \in \mathcal{F}, \quad \frac{P f - P_n f}{\sqrt{P f}} \leq 2\sqrt{\frac{\log S_\mathcal{F}(2n) + \log \frac{4}{\delta}}{n}}$$
Consequence

From the square root trick we get

\[
\forall f \in \mathcal{F}, \quad P f \leq P_n f + 2 \sqrt{P_n f \log S_{\mathcal{F}}(2n) + \log \frac{4}{\delta}} \frac{\log S_{\mathcal{F}}(2n) + \log \frac{4}{\delta}}{n} + 4 \frac{\log S_{\mathcal{F}}(2n) + \log \frac{4}{\delta}}{n}
\]
Proof sketch

1. Symmetrization

\[P \left[\sup_{f \in \mathcal{F}} \frac{P f - P_n f}{\sqrt{P f}} \geq t \right] \leq 2P \left[\sup_{f \in \mathcal{F}} \frac{P_n' f - P_n f}{\sqrt{(P_n f + P_n' f)/2}} \geq t \right] \]

2. Randomization

\[\cdots = 2E \left[P_\sigma \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_i (f(Z'_i) - f(Z_i)) \geq t \right] \right] \]

3. Tail bound
Zero noise

Ideal situation :

- g_n empirical risk minimizer
- Bayes classifier in the class G
- $R^* = 0$ (no noise)

In that case

- $R_n(g_n) = 0$

$\Rightarrow R(g_n) = O\left(\frac{d\log n}{n}\right)$.
Interpolating between rates?

- Rates are not correctly estimated by this inequality.
- Consequence of relative error bounds:

\[
P f_n \leq P f^* + 2 \sqrt{P f^* \log S_F(2n) + \log \frac{4}{\delta} n} \\
+ 4 \frac{\log S_F(2n) + \log \frac{4}{\delta}}{n}
\]

- The quantity which is small is not \(P f^* \) but \(P f_n - P f^* \).
- But relative error bounds do not apply to differences.
Definitions

- \(\eta(x) = \mathbb{E}[Y|X=x] = 2\mathbb{P}[Y=1|X=x] - 1 \) is the regression function
- \(t(x) = \text{sgn} \eta(x) \) is the target function or Bayes classifier (Bayes risk \(R^* = \mathbb{E}[n(X)] \))
- in the deterministic case \(Y = t(X) \) (\(\mathbb{P}[Y=1|X] \in \{0,1\} \))
- in general, noise level

\[
 n(x) = \min(\mathbb{P}[Y=1|X=x], 1 - \mathbb{P}[Y=1|X=x]) \\
 = (1 - \eta(x))/2
\]
Approximation/Estimation

• Bayes risk

\[R^* = \inf_g R(g) . \]

Best risk a deterministic function can have (risk of the target function, or Bayes classifier).

• Decomposition: \(R(g^*) = \inf_{g \in G} R(g) \)

\[R(g_n) - R^* = R(g) - R^* + R(g_n) - R(g^*) \]

Approximation Estimation

• Only the estimation error is random (i.e. depends on the data).
Intermediate noise

Instead of assuming that $|\eta(x)| = 1$ (i.e. $n(x) = 0$), the deterministic case, one can assume that n is well-behaved. Two kinds of assumptions

- n not too close to $1/2$
- n not often too close to $1/2$
Massart Condition

- For some $c > 0$, assume

 $$ |\eta(X)| > \frac{1}{c} \text{ almost surely} $$

- There is no region where the decision is completely random

- Noise bounded away from $1/2$
Tsybakov Condition

Let $\alpha \in [0, 1]$, equivalent conditions

(1) $\exists c > 0, \forall g \in \{-1, 1\}^X,$

$$\mathbb{P}[g(X)\eta(X) \leq 0] \leq c(R(g) - R^*)^\alpha$$

(2) $\exists c > 0, \forall A \subset X, \int_A dP(x) \leq c(\int_A |\eta(x)|dP(x))^\alpha$

(3) $\exists B > 0, \forall t \geq 0, \mathbb{P}[|\eta(X)| \leq t] \leq Bt^{\frac{\alpha}{1-\alpha}}$
Equivalence

• (1) \iff (2) Recall \(R(g) - R^* = \mathbb{E} [|\eta(X)| 1_{[g\eta \leq 0]}] \). For each function \(g \), there exists a set \(A \) such that \(1_{[A]} = 1_{[g\eta \leq 0]} \)

• (2) \implies (3) Let \(A = \{ x : |\eta(x)| \leq t \} \)

\[
\mathbb{P} [|\eta| \leq t] = \int_A dP(x) \leq c \left(\int_A |\eta(x)| dP(x) \right)^{\alpha} \\
\leq ct^{\alpha} \left(\int_A dP(x) \right)^{\alpha} \\
\Rightarrow \mathbb{P} [|\eta| \leq t] \leq c^{1-\alpha} t^{1-\alpha}
\]
\((3) \Rightarrow (1) \)

\[
R(g) - R^* = \mathbb{E} \left[|\eta(X)| 1_{[g\eta \leq 0]} \right] \\
\geq t \mathbb{E} \left[1_{[g\eta \leq 0]} 1_{[|\eta| > t]} \right] \\
= t \mathbb{P} [|\eta| > t] - t \mathbb{E} \left[1_{[g\eta > 0]} 1_{[|\eta| > t]} \right] \\
\geq t \left(1 - B t^{1-\alpha} \right) - t \mathbb{P} [g\eta > 0] = t \left(\mathbb{P} [g\eta \leq 0] - B t^{\frac{\alpha}{1-\alpha}} \right)
\]

Take \(t = \left(\frac{(1-\alpha) \mathbb{P} [g\eta \leq 0]}{B} \right)^{\frac{(1-\alpha)}{\alpha}} \)

\[
\Rightarrow \mathbb{P} [g\eta \leq 0] \leq \frac{B^{1-\alpha}}{(1-\alpha)(1-\alpha)\alpha^\alpha} (R(g) - R^*)^\alpha
\]
Remarks

• α is in $[0, 1]$ because

$$R(g) - R^* = \mathbb{E} [\eta(X)|1_{[g\eta \leq 0]}] \leq \mathbb{E} [1_{[g\eta \leq 0]}]$$

• $\alpha = 0$ no condition

• $\alpha = 1$ gives Massart's condition
Consequences

- Under Massart’s condition

\[\mathbb{E} \left[(1[g(X) \neq Y] - 1[t(X) \neq Y])^2 \right] \leq c(R(g) - R^*) \]

- Under Tsybakov’s condition

\[\mathbb{E} \left[(1[g(X) \neq Y] - 1[t(X) \neq Y])^2 \right] \leq c(R(g) - R^*)^\alpha \]
Relative loss class

- \mathcal{F} is the loss class associated to \mathcal{G}

- The relative loss class is defined as

\[\tilde{\mathcal{F}} = \{ f - f^* : f \in \mathcal{F} \} \]

- It satisfies

\[Pf^2 \leq c(Pf)^\alpha \]
Finite case

- Union bound on \(\tilde{F} \) with Bernstein’s inequality would give

\[
P_{f_n} - P_{f^*} \leq P_{n f_n} - P_{n f^*} + \sqrt{\frac{8c(P_{f_n} - P_{f^*})^\alpha \log \frac{N}{\delta}}{n}} + \frac{4 \log \frac{N}{\delta}}{3n}
\]

- Consequence when \(f^* \in F \) (but \(R^* > 0 \))

\[
P_{f_n} - P_{f^*} \leq C \left(\frac{\log \frac{N}{\delta}}{n} \right)^{\frac{1}{2-\alpha}}
\]

always better than \(n^{-1/2} \) for \(\alpha > 0 \)
Local Rademacher average

- Definition

\[R(\mathcal{F}, r) = \mathbb{E} \left[\sup_{f \in \mathcal{F} : P_f^2 \leq r} R_n f \right] \]

- Allows to generalize the previous result

- Computes the capacity of a small ball in \(\mathcal{F} \) (functions with small variance)

- Under noise conditions, small variance implies small error
Sub-root functions

Definition

A function $\psi : \mathbb{R} \rightarrow \mathbb{R}$ is sub-root if

- ψ is non-decreasing
- ψ is non negative
- $\psi(r)/\sqrt{r}$ is non-increasing
Sub-root functions

Properties

A sub-root function

- is continuous
- has a unique fixed point $\psi(r^*) = r^*$
Star hull

- **Definition**

\[\star \mathcal{F} = \{ \alpha f : f \in \mathcal{F}, \alpha \in [0, 1] \} \]

- **Properties**

\[\mathcal{R}_n(\star \mathcal{F}, r) \text{ is sub-root} \]

- **Entropy** of \(\star \mathcal{F} \) is not much bigger than entropy of \(\mathcal{F} \)
Result

- r^* fixed point of $\mathcal{R}(\mathcal{F}, r)$
- Bounded functions

\[
P f - P_n f \leq C \left(\sqrt{r^* \text{Var}[f]} + \frac{\log \frac{1}{\delta} + \log \log n}{n} \right)
\]

- Consequence for variance related to expectation ($\text{Var}[f] \leq c(P f)\beta$)

\[
P f \leq C \left(P_n f + (r^*)^{\frac{1}{2-\beta}} + \frac{\log \frac{1}{\delta} + \log \log n}{n} \right)
\]
Consequences

• For VC classes $\mathcal{R}(\mathcal{F}, r) \leq C \sqrt{\frac{r h}{n}}$ hence $r^* \leq C \frac{h}{n}$

• Rate of convergence of $P_n f$ to $P f$ in $O(1/\sqrt{n})$

• But rate of convergence of $P f_n$ to $P f^*$ is $O(1/n^{1/(2-\alpha)})$

Only condition is $t \in \mathcal{G}$ but can be removed by SRM/Model selection
Proof sketch (1)

- Talagrand’s inequality

\[
\sup_{f \in \mathcal{F}} P f - P_n f \leq \mathbb{E}\left[\sup_{f \in \mathcal{F}} P f - P_n f \right] + c \sqrt{\sup_{f \in \mathcal{F}} \text{Var}[f]} / n + c'/n
\]

- Peeling of the class

\[
\mathcal{F}_k = \{ f : \text{Var}[f] \in [x^k, x^{k+1}) \}
\]
Proof sketch (2)

• Application

$$\sup_{f \in \mathcal{F}_k} Pf - P_n f \leq \mathbb{E} \left[\sup_{f \in \mathcal{F}_k} Pf - P_n f \right] + c \sqrt{x \text{Var} [f] / n} + c'/n$$

• Symmetrization

$$\forall f \in \mathcal{F}, \ Pf - P_n f \leq 2\mathcal{R}(\mathcal{F}, x\text{Var} [f]) + c \sqrt{x \text{Var} [f] / n} + c'/n$$
Proof sketch (3)

• We need to 'solve' this inequality. Things are simple if \(\mathcal{R} \) behave like a square root, hence the sub-root property

\[
P f - P_n f \leq 2\sqrt{r^* \text{Var}[f]} + c\sqrt{x \text{Var}[f] / n} + c'/n
\]

• Variance-expectation

\[
\text{Var}[f] \leq c(Pf)^\alpha
\]

Solve in \(Pf \)
Data-dependent version

• As in the global case, one can use data-dependent local Rademacher averages

\[\mathcal{R}_n(\mathcal{F}, r) = \mathbb{E}_\sigma \left[\sup_{f \in \mathcal{F} : P_f^2 \leq r} R_n f \right] \]

• Using concentration one can also get

\[P_f \leq C \left(P_n f + (r_n^*)^{\frac{2}{2-\alpha}} + \frac{\log \frac{1}{\delta} + \log \log n}{n} \right) \]

where \(r_n^* \) is the fixed point of a sub-root upper bound of \(\mathcal{R}_n(\mathcal{F}, r) \)
Discussion

- Improved rates under low noise conditions
- Interpolation in the rates
- Capacity measure seems 'local',
- but depends on all the functions,
- after appropriate rescaling: each $f \in \mathcal{F}$ is considered at scale $r / P f^2$
Take Home Messages

• Deviations depend on the variance

• No noise means better rate of convergence

• Noise can be related to variance \Rightarrow noise can be quantified

• Rademacher averages can be improved with variance \Rightarrow localized
Lecture 3

Loss Functions

• Properties

• Consistency

• Examples

• Losses and noise
Motivation (1)

- ERM: minimize $\sum_{i=1}^{n} 1_{[g(X_i) \neq Y_i]}$ in a set \mathcal{G}

\Rightarrow Computationally hard

\Rightarrow Smoothing

- Replace binary by real-valued functions
- Introduce smooth loss function

$$\sum_{i=1}^{n} \ell(g(X_i), Y_i)$$
Motivation (2)

- Hyperplanes in infinite dimension have
 - infinite VC-dimension
 - but finite scale-sensitive dimension (to be defined later)

⇒ It is good to have a scale

⇒ This scale can be used to give a confidence (i.e. estimate the density)

- However, losses do not need to be related to densities
- Can get bounds in terms of margin error instead of empirical error (smoother → easier to optimize for model selection)
Take Home Messages

• Convex losses for computational convenience

• No effect asymptotically

• Influence on the rate of convergence

• Classification or regression losses
Margin

• It is convenient to work with (symmetry of $+1$ and -1)

\[\ell(g(x), y) = \phi(yg(x)) \]

• $yg(x)$ is the margin of g at (x, y)

• Loss

\[L(g) = \mathbb{E} [\phi(Yg(X))] , \quad L_n(g) = \frac{1}{n} \sum_{i=1}^{n} \phi(Y_ig(X_i)) \]

• Loss class $\mathcal{F} = \{ f : (x, y) \mapsto \phi(yg(x)) : g \in \mathcal{G} \}$
Minimizing the loss

- Decomposition of $L(g)$

$$\frac{1}{2} \mathbb{E} \left[\mathbb{E} \left[(1 + \eta(X))\phi(g(X)) + (1 - \eta(X))\phi(-g(X)) \right] | X \right]$$

- Minimization for each x

$$H(\eta) = \inf_{\alpha \in \mathbb{R}} \left((1 + \eta)\phi(\alpha)/2 + (1 - \eta)\phi(-\alpha)/2 \right)$$

- $L^* := \inf_g L(g) = \mathbb{E} \left[H(\eta(X)) \right]$
Classification-calibrated

- A minimal requirement is that the minimizer in $H(\eta)$ has the correct sign (that of the target t or that of η).

- Definition

 ϕ is **classification-calibrated** if, for any $\eta \neq 0$

 $$\inf_{\alpha: \alpha \eta \leq 0} (1+\eta)\phi(\alpha) + (1-\eta)\phi(-\alpha) > \inf_{\alpha \in \mathbb{R}} (1+\eta)\phi(\alpha) + (1-\eta)\phi(-\alpha)$$

- This means the infimum is achieved for an α of the correct sign (and not for an α of the wrong sign, except possibly for $\eta = 0$).
Consequences (1)

Results due to (Jordan, Bartlett and McAuliffe 2003)

• ϕ is classification-calibrated iff for all sequences g_i and every probability distribution P,

\[L(g_i) \rightarrow L^* \Rightarrow R(g_i) \rightarrow R^* \]

• When ϕ is convex (convenient for optimization) ϕ is classification-calibrated iff it is differentiable at 0 and $\phi'(0) < 0$
Consequences (2)

- Let $H^-(\eta) = \inf_{\alpha: \alpha \eta \leq 0} ((1 + \eta) \phi(\alpha)/2 + (1 - \eta) \phi(-\alpha)/2)$

- Let $\psi(\eta)$ be the largest convex function below $H^-(\eta) - H(\eta)$

- One has

$$\psi(R(g) - R^*) \leq L(g) - L^*$$
Examples (1)
Examples (2)

- Hinge loss
 \[\phi(x) = \max(0, 1 - x), \quad \psi(x) = x \]

- Squared hinge loss
 \[\phi(x) = \max(0, 1 - x)^2, \quad \psi(x) = x^2 \]

- Square loss
 \[\phi(x) = (1 - x)^2, \quad \psi(x) = x^2 \]

- Exponential
 \[\phi(x) = \exp(-x), \quad \psi(x) = 1 - \sqrt{1 - x^2} \]
Low noise conditions

- Relationship can be improved under low noise conditions
- Under Tsybakov’s condition with exponent α and constant c,

$$c(R(g) - R^*)^\alpha \psi((R(g) - R^*)^{1-\alpha}/2c) \leq L(g) - L^*$$

- Hinge loss (no improvement)

$$R(g) - R^* \leq L(g) - L^*$$

- Square loss or squared hinge loss

$$R(g) - R^* \leq (4c(L(g) - L^*))^{\frac{1}{2-\alpha}}$$
Estimation error

- Recall that Tsybakov condition implies \(P f^2 \leq c(Pf)^\alpha \) for the relative loss class (with 0—1 loss)

- What happens for the relative loss class associated to \(\phi \)?

- Two possibilities
 - Strictly convex loss (can modify the metric on \(\mathbb{R} \))
 - Piecewise linear
Strictly convex losses

- Noise behavior controlled by modulus of convexity

- Result

\[\delta(\frac{\sqrt{P f^2}}{K}) \leq P f / 2 \]

with \(K \) Lipschitz constant of \(\phi \) and \(\delta \) modulus of convexity of \(L(g) \) with respect to \(\| f - g \|_{L_2(P)} \)

- Not related to noise exponent
Piecewise linear losses

- Noise behavior related to noise exponent

- Result for hinge loss
 \[P f^2 \leq C P f^\alpha \]
 if initial class \(G \) is uniformly bounded
Estimation error

• With bounded and Lipschitz loss with convexity exponent γ, for a convex class \mathcal{G},

$$L(g) - L(g^*) \leq C \left((r^*)^{\frac{2}{\gamma}} + \frac{\log \frac{1}{\delta} + \log \log n}{n} \right)$$

• Under Tsybakov’s condition for the hinge loss (and general \mathcal{G})

$$P f^2 \leq C P f^\alpha$$

$$L(g) - L(g^*) \leq C \left((r^*)^{\frac{1}{2-\alpha}} + \frac{\log \frac{1}{\delta} + \log \log n}{n} \right)$$
Examples

Under Tsybakov’s condition

- Hinge loss

\[R(g) - R^* \leq L(g^*) - L^* + C \left((r^*)^{\frac{1}{2-\alpha}} + \frac{\log \frac{1}{\delta} + \log \log n}{n} \right) \]

- Squared hinge loss or square loss \(\delta(x) = cx^2 \), \(Pf^2 \leq CPf \)

\[R(g) - R^* \leq C \left(L(g^*) - L^* + C'(r^* + \frac{\log \frac{1}{\delta} + \log \log n}{n}) \right)^{\frac{1}{2-\alpha}} \]
Classification vs Regression losses

- Consider a classification-calibrated function ϕ
- It is a classification loss if $L(t) = L^*$
- otherwise it is a regression loss
Classification vs Regression losses

- Square, squared hinge, exponential losses
 - Noise enters relationship between risk and loss
 - Modulus of convexity enters in estimation error

- Hinge loss
 - Direct relationship between risk and loss
 - Noise enters in estimation error

⇒ Approximation term not affected by noise in second case
⇒ Real value does not bring probability information in second case
Take Home Messages

• Convex losses for computational convenience

• No effect asymptotically \Rightarrow Classification calibrated property

• Influence on the rate of convergence \Rightarrow approximation or estimation, related to noise level

• Classification or regression losses \Rightarrow depends on what you want to estimate
Lecture 4

SVM

- Computational aspects
- Capacity Control
- Universality
- Special case of RBF kernel
Take Home Messages

- Smooth parametrization
- Regularization
- RBF: universal, flexible, locally preserving
Formulation (1)

- Soft margin
 \[
 \min_{w,b,\xi} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{m} \xi_i \\
 y_i (\langle w, x_i \rangle + b) \geq 1 - \xi_i \\
 \xi_i \geq 0
 \]

- Convex objective function and convex constraints
- Unique solution
- Efficient procedures to find it

→ Is it the right criterion?
Formulation (2)

• Soft margin

\[
\min_{\mathbf{w}, b, \xi} \frac{1}{2} \| \mathbf{w} \|^2 + C \sum_{i=1}^{m} \xi_i
\]

\[y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \geq 1 - \xi_i, \quad \xi_i \geq 0\]

• Optimal value of \(\xi_i \)

\[\xi^*_i = \max(0, 1 - y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b))\]

• Substitute above to get

\[
\min_{\mathbf{w}, b} \frac{1}{2} \| \mathbf{w} \|^2 + C \sum_{i=1}^{m} \max(0, 1 - y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b))
\]
Regularization

General form of regularization problem

\[
\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} c(y_i f(x_i)) + \lambda \| f \|^2
\]

\[\rightarrow\] Capacity control by regularization with convex cost
Loss Function

\[\phi(Yf(X)) = \max(0, 1 - Yf(X)) \]

- Convex, non-increasing, upper bounds \(1_{[Yf(X) \leq 0]}\)
- Classification-calibrated
- Classification type \((L^* = L(t))\)

\[R(g) - R^* \leq L(g) - L^* \]
Regularization

Choosing a kernel corresponds to

- Choose a sequence \((a_k)\)
- Set

\[
\| f \|^2 := \sum_{k \geq 0} a_k \int |f^{(k)}|^2 dx
\]

⇒ penalization of high order derivatives (high frequencies)

⇒ enforce smoothness of the solution
Capacity: VC dimension

- The VC dimension of the set of hyperplanes is $d + 1$ in \mathbb{R}^d.
 Dimension of feature space?
 ∞ for RBF kernel
- w chosen in the span of the data ($w = \sum \alpha_i y_i x_i$)
 The span of the data has dimension m for RBF kernel ($k(., x_i)$ linearly independent)
- The VC bound does not give any information

$$\sqrt{\frac{h}{n}} = 1$$

\Rightarrow Need to take the margin into account
Capacity: Shattering dimension

Hyperplanes with Margin

If $\|x\| \leq R$,

$$vC(\text{hyperplanes with margin } \rho, 1) \leq \frac{R^2}{\rho^2}$$
Margin

• The shattering dimension is related to the margin

• Maximizing the margin means minimizing the shattering dimension

• Small shattering dimension \Rightarrow good control of the risk

\Rightarrow this control is automatic (no need to choose the margin beforehand)

\Rightarrow but requires tuning of regularization parameter
Capacity: Rademacher Averages (1)

- Consider hyperplanes with $\|w\| \leq M$
- Rademacher average
 \[
 \frac{M}{n\sqrt{2}} \sqrt{\sum_{i=1}^{n} k(x_i, x_i)} \leq R_n \leq \frac{M}{n} \sqrt{\sum_{i=1}^{n} k(x_i, x_i)}
 \]
- Trace of the Gram matrix
- Notice that $R_n \leq \sqrt{R^2/(n^2 \rho^2)}$
Rademacher Averages (2)

\[E \left[\sup_{\|w\| \leq M} \frac{1}{n} \sum_{i=1}^{n} \sigma_i \langle w, \delta_{x_i} \rangle \right] \]

\[= \ E \left[\sup_{\|w\| \leq M} \left\langle w, \frac{1}{n} \sum_{i=1}^{n} \sigma_i \delta_{x_i} \right\rangle \right] \]

\[\leq \ E \left[\sup_{\|w\| \leq M} \|w\| \left\| \frac{1}{n} \sum_{i=1}^{n} \sigma_i \delta_{x_i} \right\| \right] \]

\[= \frac{M}{n} E \left[\sqrt{\left\langle \sum_{i=1}^{n} \sigma_i \delta_{x_i}, \sum_{i=1}^{n} \sigma_i \delta_{x_i} \right\rangle} \right] \]
Rademacher Averages (3)

\[
\frac{M}{n} \mathbb{E} \left[\sqrt{\left\langle \sum_{i=1}^{n} \sigma_i \delta_{x_i}, \sum_{i=1}^{n} \sigma_i \delta_{x_i} \right\rangle} \right]
\leq \frac{M}{n} \sqrt{\mathbb{E} \left[\left\langle \sum_{i=1}^{n} \sigma_i \delta_{x_i}, \sum_{i=1}^{n} \sigma_i \delta_{x_i} \right\rangle \right]}
= \frac{M}{n} \sqrt{\mathbb{E} \left[\sum_{i,j} \sigma_i \sigma_j \left\langle \delta_{x_i}, \delta_{x_j} \right\rangle \right]}
= \frac{M}{n} \sqrt{\sum_{i=1}^{n} k(x_i, x_i)}
\]
Improved rates – Noise condition

- Under Massart’s condition \(|\eta| > \eta_0\), with \(\|g\|_\infty \leq M\)

\[
\mathbb{E} \left[\left(\phi(Y g(X)) - \phi(Y t(X)) \right)^2 \right] \leq \left(M - 1 + 2/\eta_0 \right) (L(g) - L^*) .
\]

→ If noise is nice, variance linearly related to expectation

→ Estimation error of order \(r^*\) (of the class \(G\))
Improving rates – Capacity (1)

- \(r_n^* \) related to decay of eigenvalues of the Gram matrix

\[
r_n^* \leq \frac{c}{n} \min_{d \in \mathbb{N}} \left(d + \sqrt{\sum_{j > d} \lambda_j} \right)
\]

- Note that \(d = 0 \) gives the trace bound

- \(r_n^* \) always better than the trace bound (equality when \(\lambda_i \) constant)
Improved rates – Capacity (2)

Example: exponential decay

- $\lambda_i = e^{-\alpha_i}$
- Global Rademacher of order $\frac{1}{\sqrt{n}}$
- r_n^* of order $\frac{\log n}{n}$
Kernel

Why is it good to use kernels?

- Gaussian kernel (RBF)

\[k(x, y) = e^{-\frac{\|x-y\|^2}{2\sigma^2}} \]

- \(\sigma \) is the width of the kernel

→ What is the geometry of the feature space?
RBF

Geometry

• Norms

\[\| \Phi(x) \|^2 = \langle \Phi(x), \Phi(x) \rangle = e^0 = 1 \]

\(\rightarrow \) sphere of radius 1

• Angles

\[\cos(\Phi(x), \Phi(y)) = \left\langle \frac{\Phi(x)}{\| \Phi(x) \|}, \frac{\Phi(y)}{\| \Phi(y) \|} \right\rangle = e^{-\|x-y\|^2/2\sigma^2} \geq 0 \]

\(\rightarrow \) Angles less than 90 degrees

• \(\Phi(x) = k(x, .) \geq 0 \)

\(\rightarrow \) positive quadrant
RBF
RBF

Differential Geometry

- **Flat** Riemannian metric

 → 'distance' along the sphere is equal to distance in input space

- Distances are _contracted_

 → 'shortcuts' by getting outside the sphere
RBF

Geometry of the span

Ellipsoid

- $K = (k(x_i, x_j))$ Gram matrix
- Eigenvalues $\lambda_1, \ldots, \lambda_m$
- Data points mapped to ellipsoid with lengths $\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_m}$
RBF

Universality

• Consider the set of functions

\[H = \text{span}\{k(x, \cdot) : x \in \mathcal{X}\} \]

• \(H \) is dense in \(C(\mathcal{X}) \)

\[\Rightarrow \] Any continuous function can be approximated (in the \(\| \cdot \|_\infty \) norm) by functions in \(H \)

\[\Rightarrow \] with enough data one can construct any function
RBF

Eigenvalues

- Exponentially decreasing

- Fourier domain: exponential penalization of derivatives

- Enforces smoothness with respect to the Lebesgue measure in input space
RBF

Induced Distance and Flexibility

• $\sigma \to 0$
 1-nearest neighbor in input space
 Each point in a separate dimension, everything orthogonal

• $\sigma \to \infty$
 linear classifier in input space
 All points very close on the sphere, initial geometry

• Tuning σ allows to try all possible intermediate combinations
RBF

Ideas

• Works well if the Euclidean distance is good

• Works well if decision boundary is smooth

• Adapt smoothness via σ

• Universal
Choosing the Kernel

- Major issue of current research
- Prior knowledge (e.g. invariances, distance)
- Cross-validation (limited to 1-2 parameters)
- Bound (better with convex class)

⇒ Lots of open questions...
Take Home Messages

• Smooth parametrization \Rightarrow regularization and smoothness parameters

• Regularization \Rightarrow soft capacity control

• RBF: universal, flexible, locally preserving \Rightarrow trust the structure locally and do sensible things globally