Quantifying the Impact of Jointed Concrete Pavement Curling and Warping on Pavement Unevenness

George Chang, PhD, PE
Transtec Group
Project Manager

gkchang@theTranstecGroup.com

Portorož, Slovenia
US FHWA Curl/Warp Study

- Impact of Curling and Warping on JCP Performance
Outlines

- Curl/Warp Measurement
- Profile Synchronization and Joint ID
- 2GCI Curvature Index
- RoCK System for Curvature-Impact-Roughness Analysis
Curl/Warp Measurement

- **What to be measured?**
 - Site Selection
 - Data Collection

- **How to measure?**
 - Profiling
 - Temperature
 - Others
Diurnal Profiling

- Critical Passes!!

Temperature Gradient (deg F/inch)

12:00 PM 4:00 PM 8:00 PM 12:00 AM 4:00 AM 8:00 AM 12:00 PM 4:00 PM

Early AM

Mid-AM

Evening

Late AM - Early PM
Outlines

- Curl/Warp Measurement
- Profile Synchronization and Joint ID
- 2GCI Curvature Index
- RoCK System for Curvature-Impact-Roughness Analysis
Raw Profile

Portorož, Slovenia

Distance (m)

Left Elevation (mm)
Spike Profile

- Filter with moving average anti-smoothing
- Normalize by RMS
- Search deepest dip by a threshold

Portorož, Slovenia
Spike Incidence

Assemble the dip count across the data set

Spike Incidence (percent)

Distance (m)

Portorož, Slovenia
Weeded Spike Incidence

Weed/clear false hits
Extract the joint locations

Portorož, Slovenia
Outlines

- Curl/Warp Measurement
- Profile Synchronization and Joint ID
- 2GCI Curvature Index
- RoCK System for Curvature-Impact-Roughness Analysis
Westergaard Curling Formula

\[
\begin{align*}
\text{Deflection (Modified eq.)} & \quad \text{Transv. Stresses at Top (psi)} \\
\end{align*}
\]

\[
\begin{align*}
\text{Distance from Slab Center (inches)} & \\
\end{align*}
\]

Portorož, Slovenia
Adjusted Westergaard Curling Parameters

- Adjusted to overcome Westergaard assumptions
- Fit to actual slab deformation
- More fundamental than an arbitrary geometric function

Fitted parameters:
- Pseudo-radius of relative stiffness
- Pseudo-strain gradient
2GCI Fit – Curled Down Slab

25-mm data
2GCI Computation

- Isolate the individual slab segments
- De-trend and de-mean the profile segment
- Mask joints
- Define model parameters
- Perform nonlinear curve fitting
2GCI Analysis

AZ_001am - winter

![Graph showing Pseudo Gradient (με/cm) vs Slab Number]

- Slab Number
- Pseudo Gradient (με/cm)

Legend:
- Early AM
- Mid AM
- Noon
- Late PM

Portorož, Slovenia
2GCI Analysis

AZ_001am - winter

Graph showing pseudo-gradient distribution (μɛ/cm) for different time periods: Early AM, Mid AM, Noon, Late PM. The graph includes quartiles, minimum, median, maximum, and quartile 3 data points. The x-axis represents the time periods, and the y-axis represents the pseudo-gradient distribution values.
2GCI Analysis

MN_046a - summer

Pseudo Gradient (με/см)

Slab Number

- Early AM
- Mid AM
- Noon
- Late PM
2GCI Analysis

MN_046a - summer
Mean Curvatures

Pseudo-gradients (μe/cm)
Outlines

- Curl/Warp Measurement
- Profile Synchronization and Joint ID
- 2GCI Curvature Index
- RoCK System for Curvature-Impact-Roughness Analysis
2GCI vs Roughness

Mean Pseudo-Gradient (με/cm)

Time

-16
-14
-12
-10
-8
-6
-4
-2
0

0:00 4:48 9:36 14:24 19:12 0:00

Spring
Summer
Fall
Winter

Portorož, Slovenia
The RoCK Chart

Roughness

Curvature (upward)

Clf Crt 0 Portorož, Slovenia

Curvature (downward)

Rlb

Rzc

Rub
Roughness Decomposition

Curvature-related Roughness

Non Curvature-related Roughness

Portorož, Slovenia
TYPE I-A Sites

Curled up
Curvature dominates roughness

Src < 0
Rbtc > 0

Curvature (upward)
Curvature (downward)
Portorož, Slovenia

Roughness

Src < 0
Rbtc ~ 0

Curled up mildly
Curvature affects roughness

TYPE I-B Sites

Curvature (upward)
Curvature (downward)

Clf
Crt

Portorož, Slovenia
TYPE II Sites

Curled up and down
Curvature affects
Roughness mildly

Src < 0
Rbtc ~ 0

Src > 0
Rbtc > 0

Curvature (upward)
Curvature (downward)

Clf
Crt

Portorož, Slovenia
TYPE III-A Sites

Curled down
Curvature dominates roughness

Curvature (upward)

Curvature (downward)

Src > 0
Rbtc > 0
Rlb CrtClf

Rubic

Rzr

Portorož, Slovenia
TYPE III-B Sites

Curled down mildly
Curvature affects roughness

Roughness

Surf 2008

Src > 0
Rbtc ~ 0

Clf Crf

Portorož, Slovenia
Bolivian Project

- Two-lane undivided JCP
- Mountainous terrain with moderate fills and cuts
- 24-ft wide, 12-ft joint spacing
- 8-inch slab on 6-inch granular base
- Local climate is arid with rains from December to March
- Drastic overnight temperature drops
Bolivian Project

- Low relative humidity and extreme temperatures
- Mix with a relatively high water cement ratio, high CTE aggregate, and inadequate curing techniques.
- Longitudinal cracks at the center of the slab in both travel directions after the first winter
Bolivian Project

Portorož, Slovenia
Bolivian Project

Portorož, Slovenia
Bolivian Project

Effect of curling and loading-current geometry

Stresses (Kpa)

- Legal limit load only
- Loading on 28 Ton tandem only
- Curling + legal load
- Curling + load on 28 ton tandem
- Curling + load on 20 Ton simple axle

Strength
The Implications...

- What’s timing to measure roughness for a pavement acceptance testing?
- What’s the best practice to avoid curl and warp?
- What’s the best time to grind the pavements to improve smoothness?
Tools you can use...

- New, robust profile synchronization and joint identification techniques
- Invention of 2GCI to better characterize slab curvature
- New, effective slab curvature analysis framework
- RoCK System to assess curvature’s impact on roughness
Acknowledgement

- **US FHWA Sponsorship**
- **Co-authors:**
 - Steven M. Karamihas, University of Michigan, USA
 - Robert Otto Rasmussen, P.E., Ph.D., The Transtec Group, Inc., USA
 - David Merritt, P.E., M.S., The Transtec Group, Inc., USA
 - Mark Swanlund, P.E., US DOT Federal Highway Administration, USA
- **Many US State DOT for assistance in field measurements**