Multi-Task Feature Learning

Andreas Argyriou
Dept. of Computer Science, University College London

Theodoros Evgeniou
Technology Management, INSEAD

Massimiliano Pontil
Dept. of Computer Science, University College London
Learning Multiple Tasks Simultaneously

- Learning multiple related tasks vs. learning independently.

- Few data per task; pooling data across related tasks.

- Examples:
 - user preferences (movies, products etc.)
 - computer vision (recognizing faces, objects etc.)
 - text classification
 etc.
Multi-Task Feature Learning

- Assumption: common underlying representation across tasks.

- A small set of shared features ([Baxter 1995], [Torralba et al. 2004], [Ando & Zhang 2005] etc.).
Learning Paradigm

- Tasks $t = 1, \ldots, T$.
- m examples per task: $(x_{t1}, y_{t1}), \ldots, (x_{tm}, y_{tm}) \in \mathbb{R}^d \times \mathbb{R}$.
- Estimate $f_t: \mathbb{R}^d \to \mathbb{R}$, $t = 1, \ldots, T$.
- Consider features $h_1(x), \ldots, h_d(x)$
- Predict using functions $f_t(x) = \sum_{i=1}^{d} a_{it} h_i(x)$
Weighting Features

- Feature importance vs. tasks is described by the matrix

\[
A = \begin{pmatrix}
 a_{11} & \cdots & a_{1T} \\
 \vdots & \ddots & \vdots \\
 a_{d1} & \cdots & a_{dT}
\end{pmatrix} = \begin{pmatrix}
 -a_{11} \\
 \vdots \\
 -a_{dT}
\end{pmatrix} = \begin{pmatrix}
 a_1 & \cdots & a_T
\end{pmatrix}
\]

where

\[
a^i = (a_{i1}, \ldots, a_{iT})
\]

\[
a_t = \begin{pmatrix}
 a_{1t} \\
 \vdots \\
 a_{dt}
\end{pmatrix}
\]
Sharing Features Across Tasks

- Desiderata:
 1. a *low-dimensional data representation* shared across the tasks
 2. the importance of each feature is *preserved across the tasks*
 3. *convex* formulation
Sharing Features Across Tasks

- In terms of matrix A:
 1. most a^i should equal zero
 2. for each i, the $|a_{it}|$ should be similar
$(2, 1)$-Norm

- Approximate desiderata 1, 2 using the norm

\[
\|A\|_{2,1} := \sum_{i=1}^{d} \sqrt{\sum_{t=1}^{T} a_{it}^2}
\]

- First compute the 2-norms of the rows: $\|a^1\|_2, \ldots, \|a^d\|_2$
- Then compute the 1-norm of the resulting vector: $\sum_{i=1}^{d} \|a^i\|_2$.
(2, 1)-Norm

- Want the (2, 1)-norm to be small.

- Small 1-norm favors sparsity and small 2-norm favors uniformity.

- Hence, small (2, 1)-norm means
 - many rows a_i are ≈ 0
 - for each i, the $|a_{it}|$ are similar.
(2, 1)-Norm Regularization

\[
\min\left\{ \sum_{t=1}^{T} \sum_{j=1}^{m} L(y_{tj}, \sum_{i=1}^{d} a_{it} h_i(x_{tj})) + \gamma \|A\|_{2,1}^2 : A \in \mathbb{R}^{d \times T} \right\}
\]

- This is a convex problem.
- The number of features in the solution decreases with γ.
\textbf{L_1 Regularization}

• For one task, this is simply L_1 regularization:

\[
\min \left\{ \sum_{j=1}^{m} L(y_j, \sum_{i=1}^{d} a_i h_i(x_j)) + \gamma \|a\|_1^2 : a \in \mathbb{R}^d \right\}
\]

• $\|a\|_1$ approximates \#\{nonzero entries of a\}.

• Many components of the solution will be ≈ 0.
Learning the Features

- How about learning the *features* as well?

- Focus on *linear, orthonormal* features

 \[h_i(x) = \langle u_i, x \rangle \]

\[
\min \left\{ \sum_{t=1}^{T} \sum_{j=1}^{m} L(y_{tj}, \langle a_t, U^\top x_{tj} \rangle) + \gamma \| A \|_{2,1}^2 : U^\top U = I, A \in \mathbb{R}^{d \times T} \right\}
\]

- *Non-convex, nonsmooth* problem.
Convex Reformulation

- Variable transformation

\[W = \begin{pmatrix} w_1 & \ldots & w_T \end{pmatrix} = U A \]

\[D = U \text{ Diag} \left(\frac{\|a^i\|_2}{\|A\|_{2,1}} \right) U^T \]

- Optimal \(W \) will be low-rank.

- \(D \) combines features \(U \) and feature weights \(A \).
Convex Reformulation (cont.)

\[
\inf \left\{ \sum_{t=1}^{T} \sum_{j=1}^{m} L(y_{tj}, \langle w_t, x_{tj} \rangle) + \gamma \sum_{t=1}^{T} \langle w_t, D^{-1} w_t \rangle \right\}
\]

: \(W \in \mathbb{R}^{d \times T}, \ D \succ 0, \ \text{trace}(D) \leq 1 \)

- \(\sum_{t=1}^{T} \langle w_t, D^{-1} w_t \rangle \) induces relations between the tasks.

- *Jointly convex* in \(W \) and \(D \)!
Alternating Algorithm

- Alternate between W (supervised learning) and D (unsupervised “correlating” of tasks).

Initialization: set $D = \frac{I_{d\times d}}{d}$

while convergence condition is not true **do**

for $t = 1, \ldots, T$, **learn** w_t *independently* by minimizing $\sum_{j=1}^{m} L(y_{tj}, \langle w_t, x_{tj} \rangle) + \gamma \langle w_t, D^+ w_t \rangle$

end for

Find the D that best “relates” the tasks:

$$D = \frac{(WW^\top)^{\frac{1}{2}}}{\text{trace}(WW^\top)^{\frac{1}{2}}}$$ (using SVD)

end while
Experiment 1 (toy data)

- $T = 200$ tasks.

- $h_i(x) = x, \ i = 1, \ldots, d.$

- $a_{it} = \begin{cases} \mathcal{N}(0, \sigma_i) & i = 1, \ldots, 5 \\ 0 & i = 6, \ldots, d \end{cases}$

- 5 training examples per task. Inputs uniformly drawn from $[0, 1]^d$.

- Outputs $y_{tj} = \langle a_t, x_{tj} \rangle + \text{noise}.$
Experiment 1 (toy data)

- Learning multiple tasks together improves performance.
- *Improvement is large*, even when most features are irrelevant.
- More tasks lead to better estimates of the features.
Experiment 2 (real data)

- Consumers’ ratings of products [Lenk et al. 1996].
- 180 persons (tasks).
- 8 PC models (training examples); 4 PC models (test examples).
- 13 binary input attributes (RAM, CPU, price etc.).
- Integer output in \(\{0, \ldots, 10\}\) (likelihood of purchase).
Experiment 2 (real data)

- Performance improves with more tasks (for independent, error = 16.53).
- A single most important feature shared by all persons.
The most important feature weighs *technical characteristics* (RAM, CPU, CD-ROM) vs. *price*.
Summary

- Multi-task feature learning
 - *low-dimensional data representation* shared by a pool of tasks
 - feature importance *preserved across tasks*.
- *Convex problem*. Converges to global solution.
- Alternating algorithm.
- Solution is *low-rank*. Algorithm *selects the salient features*. Additional tasks enhance prediction.
Future Work

• More general, nonlinear features.

• Handle > 1 clusters of tasks. Hierarchical models of tasks/features.

• Connection to Bayesian methods.
Regularization with the Trace Norm

• Minimizing over D yields

$$
\sum_{t=1}^{T} \sum_{i=1}^{m} L(y_{ti}, \langle w_t, x_{ti} \rangle) + \gamma \|W\|_F^2
$$

• Involves the trace norm of W (compare to [Srebro et al.]).

• Favors low-rank matrices (also apparent from $W = UA$).

• Convex but nonsmooth problem.